Skip to main content
Log in

The effect of age on Ca, Cl, K, Mg, Mn, Na, P and Sr contents in roots of human female permanent teeth

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The effect of age on Ca, Cl, K, Mg, Mn, Na, P, and Sr contents in intact roots of permanent teeth of 38 apparently healthy women aged 15–55 years was investigated by neutron activation analysis. It was found that mass fractions of Ca, Cl, K, Mg, and P are at a maximum in the age range 25–35 years and above 35 years there is a monotonic decrease. A statistically significant age-dependent decrease was shown only for Mg and P. The Sr content significantly increases with age. The mass fractions of Mn and Na remain stable for the ages 15–55 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Derise NL, Ritchey SJ, Furr A (1974) Mineral composition of normal human enamel and dentine and the relation of composition to dental caries: I. Macrominerals and comparison of methods of analyses. J Dent Res 53:847–852

    Article  CAS  Google Scholar 

  2. Curzon MEJ, Cutress TW (1983) Trace elements and dental disease. PSG-John Wright, Boston

    Google Scholar 

  3. Koray M, Őner-Iyidogan Y, Soyman M, Gűrdől F (1996) The effects of fluorides and/or trace elements on the solubilities of enamel and cementum. J Trace Elements Med Biol 10:255–259

    Article  CAS  Google Scholar 

  4. LeGeros RZ, Miravite MA, Quirolgico GB, Curzon MEJ (1977) The effect of trace elements on the lattice parameters of human and synthetic apatites. In: Calcified tissues 1976, Leeds, pp 362–367

  5. Derise NL, Ritchey SJ (1974) Mineral composition of normal human enamel and dentine and the relation of composition to dental caries: II Microminerals. J Dent Res 53:853–858

    Article  CAS  Google Scholar 

  6. Davies BE, Anderson RJ (1987) The epidemiology of dental caries in relation to environmental trace elements. Experimentia 43:87–92

    Article  CAS  Google Scholar 

  7. Altshuller LF, Halak DB, Landing BH, Kehoe AR (1962) Deciduous teeth as an index of body burden of lead. J Pediatr 60:224–229

    Article  CAS  Google Scholar 

  8. Sharon IM (1988) The significance of teeth in pollution detection. Perspect Biol Med 32:124–131

    Article  CAS  Google Scholar 

  9. Zaichick V, Ovchjarenko NN (1996) In vivo X-ray fluorescent analysis of Ca, Zn, Sr, and Pb in frontal tooth enamel. J Trace Microprobe Tech 14(1):143–152

    CAS  Google Scholar 

  10. Zaichick V, Ovchjarenko N, Zaichick S (1999) In vivo energy dispersive X-ray fluorescence for measuring the content of essential and toxic trace elements in teeth. Appl Radiat Isot 50(2):283–293

    Article  CAS  Google Scholar 

  11. Zaichick V (2009) Neutron activation analysis of Ca, Cl, K, Mg, Mn, Na, P, and Sr contents in the crowns of human permanent teeth. J Radioanal Nucl Chem 281(1):41–45

    Article  CAS  Google Scholar 

  12. Alexander LM, Heaven A, Delves HT, Moreton J, Trenouth MJ (1993) Relative exposure of children to lead from dust and drinking water. Arch Environ Health 48:392–400

    Article  CAS  Google Scholar 

  13. Baranska-Gadiowska M, Kaminski M, Owcarczak K, Kabza Z (1988) Cu content in teeth of children living in the areas contaminated by Zn, Cd, and Pb. Czas Stomatol 41:406–410

    Google Scholar 

  14. Bercovitz K, Laufer D (1990) Tooth type as indicator of exposure to lead of adults and children. Arch Oral Biol 35:895–897

    Article  CAS  Google Scholar 

  15. Bloch P, Shapiro IM, Soule L, Close A, Revich B (1998) Assessment of lead exposure of children from K-XRF measurements of shed teeth. Appl Radiat Isot 49:703–705

    Article  CAS  Google Scholar 

  16. Attramadal A, Jonsen J (1978) Heavy trace elements in ancient Norwegian teeth. Acta Odontol Scand 36:97–101

    Article  CAS  Google Scholar 

  17. Baluszynska L, Szostek K, Haduch E (2001) Distribution analysis of macro and microelements in the human teeth sequences in aspect of the diet and dynamics of tooth development. In: Ermidou-Pollet S, Pollet S (eds) 3rd International Symposium on Trace elements in human: new Perspectives. Papazisis Press, Athens, pp 364–372

    Google Scholar 

  18. Budd P, Montgomery J, Evans J, Trickett M (2004) Human lead exposure in England from approximately 5500 BP to the 16th century AD. Sci Total Environ 318:45–58

    Article  CAS  Google Scholar 

  19. Glen-Haduch E, Szostek K, Glab H (1997) Cribra orbitalia and teeth element content in human from Neolithic and Early Bronze Age graves in southern Poland. J Phys Antropol 103:201–207

    Article  CAS  Google Scholar 

  20. Grandjean P, Jorgensen PJ (1990) Retention of lead and cadmium in prehistoric and modern human teeth. Environ Res 53:6–15

    Article  CAS  Google Scholar 

  21. Kuhnlein HV, Calloway DM (1977) Minerals in human teeth: differences between preindustrial and contemporary Hopi Indians. Am J Clin Nutr 30:883–886

    CAS  Google Scholar 

  22. Malara P, Kwapulinski J, Malara B (2006) Do the levels of selected metals differ significantly between the roots of carious and non-carious teeth? Sci Total Environ 369(1–3):59–68

    Article  CAS  Google Scholar 

  23. Murray MM, Bowes JH (1936) The composition of enamel, dentine and root in caries and pyorrhea. Br Dent J 61:473–477

    CAS  Google Scholar 

  24. Söremark R, Samsahl K (1962) Gamma-ray spectrometric analysis of elements in normal human dentine. J Dent Res 41:603–606

    Article  Google Scholar 

  25. Lundberg M, Söremark R, Thilander H (1965) Gamma-ray spectrometric analysis of some elements in coronal dentine of unerupted human teeth. Odont Revy 16:97–100

    CAS  Google Scholar 

  26. Hardwick JL, Martin CJ (1967) A pilot study using mass spectromenry for the estimation of the trace element content of dental tissues. Helv Odont Acta 11:62–70

    CAS  Google Scholar 

  27. Deconninck G (1973) Analyse des microquantites d’elements traces dans des substences sdides par bombardement d’ions. J Radioanal Chem 17(1–2):29–43

    Article  CAS  Google Scholar 

  28. Ahlberg M, Akselsson R (1976) Proton-induced X-ray emission in the trace analysis of human tooth enamel and dentine. Appl Rad Isot 22(5/6):279–290

    Article  Google Scholar 

  29. Lakomaa EL, Rytömaa I (1977) Mineral composition of enamel and dentin of first and permanent teeth in Finland. Scand J Dent Res 85:89–95

    CAS  Google Scholar 

  30. Cohen DD, Clayton E, Ainsworth T (1981) Preliminary investigations of trace element concentrations in human teeth. Nucl Instrum Methods 188(1):203–209

    Article  CAS  Google Scholar 

  31. Knychalska-Karwan Z, Pawlicki R, Karwan T (1981) Ultrastructural analysis quantitative distribution of macro- and microelements in young teeth hard tissues by the use of an X-ray microanalysis. Folia Histochem Cytochem (Krakow) 19(2):87–91

    CAS  Google Scholar 

  32. Del Pilar Gutiérrez-Salazara M, Reyes-Gasgaa J (2003) Microhardness and chemical composition of human tooth. Mater res 6(3):367–373

    Article  Google Scholar 

  33. Gierat-Kucharzewska B, Braziewicz J, Majewska U, Gozdz S, Karasinski A (2003) Concentration of selected elements in the roots and crowns of both primary and permanent teeth with caries disease. Biol Trace Elem Res 96:159–166

    Article  CAS  Google Scholar 

  34. Shishkina EA, Goksu HY, El-Faramawy NA, Semiochkina N (2005) Assessment of 90Sr concentration in dental tissue using thin layer beta-particle detectors and verification with numerical calculations. Radiat Res 163:462–467

    Article  CAS  Google Scholar 

  35. Nagai K, Kinoshita JI, Kimura Y, Matsumoto K (2006) Morphological and compositional changes in human teeth following 9.6-μm CO2 laser irradiation in vitro. J Oral Laser Application 6:265–276

    Google Scholar 

  36. Saiki M, Adachi LK, Adachi EM (2009) Elemental comparison in sound and carious human teeth by instrumental neutron activation analysis. J Radioanal Nucl Chem 282(1):29–32

    Article  CAS  Google Scholar 

  37. Dilber E, Malkoc MA, Ozturk AN, Ozturk F (2013) Effect of various laser irradiations on the mineral content of dentin. Eur J Dent 7(1):74–80

    Google Scholar 

  38. Liu H, Chao J, Chuang C, Chiu H, Yang C, Sun Y (2013) Study of P, Ca, Sr, Ba and Pb levels in enamel and dentine of human third molars for environmental and archaeological research. Adv Anthropol 3:71–77. doi:10.4236/aa.2013.32010

    Article  Google Scholar 

  39. Zaichick V (1997) Sampling, sample storage and preparation of biomaterials for INAA in clinical medicine, occupational and environmental health. Harmonization of health-related environmental measurements using nuclear and isotopic Techniques. IAEA, Vienna, pp 123–133

    Google Scholar 

  40. Zaichick V (2004) Losses of chemical elements in biological samples under the dry ashing process. Trace Elements Med 5(3):17–22

    Google Scholar 

  41. Zaichick V (2006) Medical elementology as a new scientific discipline. J Radioanal Nucl Chem 269:303–309

    Article  CAS  Google Scholar 

  42. Zaichick V, Zaichick S (1996) Instrumental effect on the contamination of biomedical samples in the course of sampling. J Anal Chem 51(12):1200–1205

    Google Scholar 

  43. Zaichick V (1995) Application of synthetic reference materials in the Medical Radiological Research Centre. Fresenius J Anal Chem 352:219–223

    Article  Google Scholar 

  44. Zaichick V, Dyatlov A, Zaichick S (2000) INAA application in the age dynamics assessment of major, minor, and trace elements in the human rib. J Radioanal Nucl Chem 244:189–193

    Article  CAS  Google Scholar 

  45. Zaichick V, Tzaphlidou M (2002) Determination of calcium, phosphorus, and the calcium/phosphorus ratio in cortical bone from the human femoral neck by neutron activation analysis. Appl Rad Isotop 56:781–786

    Article  CAS  Google Scholar 

  46. Tzaphlidou M, Zaichick V (2003) Calcium, phosphorus, calcium–phosphorus ratio in rib bone of healthy humans. Biol Trace Elem Res 93:63–74

    Article  CAS  Google Scholar 

  47. Zaichick V, Tzaphlidou M (2003) Calcium and phosphorus concentrations and calcium/phosphorus ratio in trabecular bone from femoral neck of healthy humans as determined by neutron activation analysis. Appl Rad Isotop 58:623–627

    Article  CAS  Google Scholar 

  48. Zaichick V (2004) INAA application in the age dynamics assessment of Ca, Cl, K, Mg, Mn, Na, P, and Sr contents in the cortical bone of human femoral neck. J Radioanal Nucl Chem 259:351–354

    Article  CAS  Google Scholar 

  49. Zaichick V (2006) NAA of Ca, Cl, K, Mg, Mn, Na, P, and Sr contents in the human cortical and trabecular bone. J Radioanal Nucl Chem 269:653–659

    Article  CAS  Google Scholar 

  50. Zaichick V (2007) INAA application in the assessment of selected elements in cancellous bone of human iliac crest. J Radioanal Nucl Chem 271:573–576

    Article  CAS  Google Scholar 

  51. Zaichick V, Zaichick S (2009) Instrumental neutron activation analysis of trace element contents in the rib bone of healthy men. J Radioanal Nucl Chem 281:47–52

    Article  CAS  Google Scholar 

  52. Zaichick S, Zaichick V (2010) The effect of age and gender on 38 chemical element contents in human iliac crest investigated by instrumental neutron activation analysis. J Trace Elem Med Biol 24(1):1–6

    Article  CAS  Google Scholar 

  53. Zaichick S, Zaichick V (2010) The effect of age and gender on 38 chemical element contents in human femoral neck investigated by instrumental neutron activation analysis. Biol Trace Elem Res 137:1–12

    Article  CAS  Google Scholar 

  54. Korelo AM, Zaichick V (1993) Software to optimize the multielement INAA of medical and environmental samples. Activation analysis in environment protection. Join Institute on Nuclear Research, Dubna, pp 326–332

    Google Scholar 

  55. Burnett GW, Zenewitz JA (1958) Studies of the composition of teeth. VII. The moisture content of calcified tissues. J Dent Res 37:581–589

    Article  CAS  Google Scholar 

  56. Nixon GS, Helsby CA (1976) The relationship between strontium in water supplies and human tooth enamel. Arch Oral Biol 21:691–695

    Article  CAS  Google Scholar 

  57. Cutress TW (1983) Teeth, calculus and bone. In: Curson ME, Cutress TW (eds) Trace elements and dental diseases. PSG-John Wright, Boston, pp 33–105

    Google Scholar 

  58. Arany S, Yoshioka N, Ishiyama D, Mizuta T (2004) Investigation of trace element distribution in permanent root dentine by laser ablation inductively coupled plasma mass spectrometry. Akita J Med 31:107–112

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Zaichick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaichick, V., Zaichick, S. The effect of age on Ca, Cl, K, Mg, Mn, Na, P and Sr contents in roots of human female permanent teeth. J Radioanal Nucl Chem 309, 295–301 (2016). https://doi.org/10.1007/s10967-016-4803-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4803-8

Keywords

Navigation