Skip to main content
Log in

Quality control of (Th,Pu)O2 fuel pellet obtained by coated agglomerate pelletization

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

(Th,Pu)O2 fuel pellets were synthesised by coated agglomerate pelletization route and characterized for the chemical quality control. (Th,Pu)O2 pellets were characterized for trace metals by spectrometric methods and non metals by ion chromatographic, spectrophotometric, conductometric and manometric methods. H, F, B and Cd contents were found to be less than 1 ppm while that for V and Cl were found to be less than 10 ppm. The pellets were found to contain Cr, Cu, Mo, Na, Ni and Pb in the range of 10–50 ppm whereas Zn, Al, Ca and C in the range of 50–100 ppm. More than 100 ppm Si, Fe and Mg were found to be present in the (Th,Pu)O2 pellets. The O/M content of the pellets were found to be ~2.00. A comparative study on (Infrared) I.R. and microwave (microwave) dissolution were also used to ascertain the Th and Pu content in the (Th,Pu)O2 pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IAEA Electricity Information (2010) World Nuclear Association, Nuclear Engineering International

  2. Sengupta A, Thulasidas SK, Natarajan V (2015) Trace level determination of precious metals in aqueous medium, U, Th and Zr based nuclear materials by ICP-AES and EDXRF: a comparative study. J Radioanal Nucl Chem 303(3):2421–2429

    CAS  Google Scholar 

  3. Sengupta A, Adya VC, Kumar M, Thulasidas SK, Godbole SV, Manchanda VK (2011) ICP-AES determination of trace metallic elements in plutonium samples containing sizeable amounts of americium. Atom Spectrosc 32(2):49–55

    CAS  Google Scholar 

  4. Mahan C, Bonchin S, Figg D, Gcrth D, Collier C (2000) Chromatographic extraction of plutonium and inorganic impurity analysis using ICP-MS and ICPAES. J Anal Atom Spectrom 15(8):929–935

    Article  CAS  Google Scholar 

  5. Huff EA, Bowers DL (1989) The determination of impurities in plutonium metal by anion exchange and ICP/AES. Appl Spectrosc 43(2):223–226

    Article  CAS  Google Scholar 

  6. Ko R (1984) The determination of impurities in plutonium nitrate solutions by amine extraction and ICP analysis. Appl Spectrosc 38(6):909–910

    Article  CAS  Google Scholar 

  7. Sengupta A, Rajeswari B, Kadam RM, Acharya R (2011) Determination of trace elements in carbon steel by inductively coupled plasma atomic emission spectrometry. Atom Spectrosc 32(5):200

    CAS  Google Scholar 

  8. Sengupta A, Rajeswari B, Kadam RM, Kshirsagar RJ (2011) Characterization of serpentine: a potential nuclear shielding material. J Radioanal Nucl Chem 292(2):903

    Article  Google Scholar 

  9. Sengupta A, Thulasidas SK, Natarajan V (2014) Development of an ICP-AES-based method for the trace level determination of common analytes in a thorium matrix without chemical separation. Atom Spectrosc 35(6):247–259

    CAS  Google Scholar 

  10. Sengupta A, Adya VC (2014) Determination of analytes at trace level in uranium matrix by ICP-AES without chemical/physical separation. J Radioanal Nucl Chem 299(3):2023–2026

    Article  CAS  Google Scholar 

  11. Sengupta A, Adya VC (2013) Determination of common analytes at trace levels in Zr matrix by ICP-AES without chemical/physical separation. Atom Spectrosc 34(6):207–215

    CAS  Google Scholar 

  12. Adya VC, Sengupta A, Godbole SV (2014) Study of the spectral interferences of zirconium on other analytes in the analysis of nuclear materials by CCD-based ICP-AES. Atom Spectrosc 35(1):25–32

    CAS  Google Scholar 

  13. Sengupta A, Adya VC, Godbole SV (2013) Spectral interference study of uranium on other analytes by using CCD based ICP-AES. J Radioanal Nucl Chem 298(2):1117–1125

    Article  CAS  Google Scholar 

  14. Sengupta A, Adya VC, Godbole SV (2012) Development of a methodology for the determination of americium and thorium by ICP-AES and their inter-element effect. J Radioanal Nucl Chem 292(3):1259–1264

    Article  CAS  Google Scholar 

  15. Sengupta A, Adya VC, Seshagiri TK, Godbole SV (2013) Exploration of CCD-based ICP-AES for studying spectral interferences of uranium on other analytes. Atom Spectrosc 34(2):53–60

    CAS  Google Scholar 

  16. Bangia TG, Dhawale BA, Adya VC, Sastry MD (1988) ICP-AES and dc arc AES determination of Sc, Y and lanthanides in nuclear grade graphite. Fresenius J Anal Chem 332:802–804

    Article  CAS  Google Scholar 

  17. Pathak N, Adya VC, Thulasidas SK, Sengupta A, Seshagiri TK, Godbole SV (2014) Direct determination of trace elements in ZrO2 By D.C. Arc-carrier distillation technique using CCD-based spectrometer. Atom Spectrosc 35(1):17–24

    CAS  Google Scholar 

  18. Page AG, Madraswala KH, Godbole SV, Kulkarni MJ, Mallapurkar VS, Joshi BD (1983) Carrier distillation-ICAP approach for trace metal assay of U3O8 powder. Fresenius J Anal Chem 315:38–41

    Article  CAS  Google Scholar 

  19. Rajeswari B, Dhawale BA, Bangia TR, Mathur JN, Page AG (2002) Role of Cyanex-272 as an extractant for uranium in the determination of rare earths by ICP-AES. J Radioanal Nucl Chem 254(3):479–483

    Article  CAS  Google Scholar 

  20. Argekar AA, Kulkarni MJ, Mathur JN, Page AG (2002) Chemical separation and ICP-AES determination of 22 metallic elements in U and Pu matrices using cyanex-923 extractant and studies on stripping of U and Pu. Talanta 56(4):591–601

    Article  CAS  Google Scholar 

  21. Malhotra RK, Satyanarayana K (1999) Estimation of trace impurities in reactor-grade uranium using ICP-AES. Talanta 50(3):601–608

    Article  CAS  Google Scholar 

  22. Marin S, Cornejo S, Jara C, Duran N (1996) Determination of trace level impurities in uranium compounds by ICPAES after organic extraction. Fresenius’ J Anal Chem 355(5–6):680–683

    CAS  Google Scholar 

  23. Gopalkrishnan M, Radhakrishnan K, Dhami PS, Kulkarni VT, Joshi MV, Patwardhan AB, Mathur JN (1997) Determination of trace impurities in uranium, thorium and plutonium matrices by solvent extraction and inductively coupled plasma atomic emission spectrometry. Talanta 44(2):169–176

    Article  CAS  Google Scholar 

  24. Sengupta A, Kulkarni MJ, Godbole SV, Natarajan V, Pathak PN (2014) Analytical application of DHOA for the determination of trace metallic constituents in Pu-based fuel materials by ICP-AES. Atom Spectrosc 35(2):60–64

    CAS  Google Scholar 

  25. Sengupta A, Kulkarni MJ, Godbole SV (2011) Analytical application of DHOA for the determination of trace metallic constituents in U based fuel materials by ICP-AES. J Radioanal Nucl Chem 289(3):961–965

    Article  CAS  Google Scholar 

  26. Moreno JB, Betti M, Alonso JG (1997) Determination of neptunium and plutonium in the presence of high concentrations of uranium by ion chromatography–inductively coupled plasma mass spectrometry. J Anal At Spectrom 12(3):355–361

    Article  Google Scholar 

  27. Stürup S, Dahlgaard H, Nielsen SC (1998) High resolution inductively coupled plasma mass spectrometry for the trace determination of plutonium isotopes and isotope ratios in environmental samples. J Anal Atom Spectrom 13(12):1321–1326

    Article  Google Scholar 

  28. Dacheux N, Aupiais J (1997) Determination of uranium, thorium, plutonium, americium, and curium ultratraces by photon electron rejecting α liquid scintillation. Anal Chem 69(13):2275–2282

    Article  CAS  Google Scholar 

  29. Crespo MT, Gascon JL, Acena ML (1993) Techniques and analytical methods in the determination of uranium, thorium, plutonium, americium and radium by adsorption on manganese dioxide. Sci Total Environ 130:383–391

    Article  Google Scholar 

  30. Sengupta A, Sankhe RH, Natarajan V (2014) Rapid and non-destructive determination of Uranium and Thorium by gamma spectrometry and a comparison with ICP-AES. J Radioanal Nucl Chem. doi:10.1007/s10967-015-4088-3

    Google Scholar 

  31. Adya VC, Sengupta A, Thulasidas SK, Natarajan V (2015) Development of CCD based ICP-AES method for the direct determination of phosphorous and sulphur in U, Th and Zr matrices. J Radioanal Nucl Chem. doi:10.1007/s10967-015-4222-2

    Google Scholar 

  32. Venugopal V (2005) Chemical quality control of nuclear materials. Indian Assoc Nucl Chem Allied Sci Bull 4(3):205–212

    Google Scholar 

  33. Kumar A, Sengupta A, Dahale ND, Thulasidas SK, Charyulu M, Natarajan V (2015) Synthesis and trace metal characterization of potassium plutonium sulphate: working reference material for Plutonium. J Radioanal Nucl Chem. doi:10.1007/s10967-015-4199-x

    Google Scholar 

  34. Khot PM, Nehete YG, Fulzele AK, Baghra C, Mishra AK, Afzal Md, Panakkal JP, Kamath HS (2012) Development of impregnated agglomerate pelletization (IAP) process for fabrication of (Th, U)O2 mixed oxide pellets. J Nucl Mater 420:1–8

    Article  CAS  Google Scholar 

  35. Johnson L, Günther-Leopold I, Kobler Waldis J, Linder HP, Low J, Cui D, Ekeroth E, Spahiu K, Evins LZ (2012) Rapid aqueous release of fission products from high burn-up LWR fuel: experimental results and correlations with fission gas release. J Nucl Mater 420(1–3):54–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. A. Goswami, Head, Radiochemistry Division and Shri Arun Kumar, Director, Nuclear Fuel Group for their constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Sengupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somayajulu, P.S., Sengupta, A., Karande, A.K. et al. Quality control of (Th,Pu)O2 fuel pellet obtained by coated agglomerate pelletization. J Radioanal Nucl Chem 308, 495–503 (2016). https://doi.org/10.1007/s10967-015-4411-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4411-z

Keywords

Navigation