Skip to main content
Log in

Abstract

In order to explore the isospin dependence of the quasifission process, a set of reactions with a wide range of N/Z was required. To maximize the sensitivity of the measurement to the isospin effects it was required that the Z of the projectile and target be fixed. Therefore, a set of isotopic targets spanning a relatively large N/Z range was desired. Tungsten, having five stable isotopes, provided a 6 neutron difference from 180W to 186W and can be obtained with high enrichment. Therefore, the production of enriched 180,182,184,186W targets was needed. Additionally, the targets were required to be relatively thin (<100 μg/cm2) in order to minimize the energy loss and scattering of the fission or quasifission fragments resulting from the reactions. Details of the W target preparation as well as target performance will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Armbruster P (2000) Annu Rev Nucl Part Sci 50:411

    Article  CAS  Google Scholar 

  2. Hofmann S, Munzenberg G (2000) Rev Mod Phys 72:733

    Article  CAS  Google Scholar 

  3. Hamilton JH, Hofmann S, Oganessian YT (2013) Annu Rev Nucl Part Sci 63:383

    Article  CAS  Google Scholar 

  4. Zagrebaev VI, Aritomo Y, Itkis MG, Oganessian YT, Ohta M (2001) Phys Rev C 65:014607

    Article  Google Scholar 

  5. du Rietz R et al (2013) Phys Rev C 88:054618

    Article  Google Scholar 

  6. Back BB (1985) Phys Rev C 31:2104

    Article  CAS  Google Scholar 

  7. Toke J et al (1985) Nucl Phys A 440:327

    Article  Google Scholar 

  8. Berriman AC et al (2001) Nature 413:144

    Article  CAS  Google Scholar 

  9. Oganessian YT et al (2006) Phys Rev C 74:044602

    Article  Google Scholar 

  10. Oganessian YT et al (2012) Phys Rev Lett 109:162501

    Article  Google Scholar 

  11. Loveland W (2007) Phys Rev C 76:014612

    Article  Google Scholar 

  12. Kohley Z (2013) EPJ Web Conf 63:02003

    Article  Google Scholar 

  13. Liang JF, Gross CJ, Kohley Z et al (2012) Phys Rev C 85:031601(R)

    Article  Google Scholar 

  14. Vinodkumar AM et al (2008) Phys Rev C 78:054608

    Article  Google Scholar 

  15. Sahm C-C et al (1985) Nucl Phys A 441:316

    Article  Google Scholar 

  16. Lesko KT et al (1986) Phys Rev C 34:2155

    Article  CAS  Google Scholar 

  17. Gallant JL (1972) Nucl Instr Meth 102:477

    Article  CAS  Google Scholar 

  18. Sapir L, Rozenwasser B (1981) Proceedings of the INTDS, 99

  19. Maier-Komor P (1974) Proceedings of the INTDS, 70

  20. Ellsworth CE (1978) Report LBL-7950, 79

  21. Ford JLC (1984) Report ANL/PHY-84-2, 43

  22. Thomas GE (1984) Report ANL/PHY-84-2, 249

  23. Maier HJ (1991) Nucl Instr Meth A303:172

    Article  CAS  Google Scholar 

  24. Folger H, Hartmann W, Klemm J, Lommel B, Thalheimer W (1997) Nucl Instr Meth A397:55

    Article  Google Scholar 

  25. Karasek FJ (1979) Nucl Instr Meth 167:165

    Article  CAS  Google Scholar 

  26. Lenz WH, Peterson CE (1961) The Powder Rolling of Molybdenum and Tungsten, Los Alamos Scientific Laboratory Report LAMS-2612

  27. Lozowski WR, Rife TM (1981) Book: Jaklovsky J (ed), Plenum Press, NY 143

  28. Stolarz A (1997) Nucl Instr Meth A397:114

    Article  Google Scholar 

  29. Gallant JL (1984) Report ANL/PHY-84-2, 219

  30. Gobby PL, Barthell BL, Gomez VM, Moore JE (1991) Nucl Instr Meth A303:187

    Article  CAS  Google Scholar 

  31. Sugai I (1997) Nucl Instr Meth A397:81

    Article  Google Scholar 

  32. Shidling PD, Abhilash SR, Kabiraj D, Madhavan N (2008) Nucl Instr Meth A590:79

    Article  Google Scholar 

  33. Lipski AR, Lefferts RS (2011) Nucl Instr Meth A655:41

    Article  Google Scholar 

  34. Thomas GE et al (1991) NIM A303:162–164

    Article  CAS  Google Scholar 

  35. Thomas GE, Greene JP (1995) NIM A362:201–204

    Article  Google Scholar 

  36. Pawlak AS, Greene JP (2011) INTDS Newsletter 36.1, 20

  37. Hammerton K, Kohley Z et al in preparation

Download references

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and by the National Science Foundation under Grant Nos. PHY-1102511 and IIA-1341088. This research used resources of ANL’s ATLAS facility, which is a DOE Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Greene.

Additional information

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greene, J.P., Kohley, Z. Isotopic tungsten targets. J Radioanal Nucl Chem 305, 743–747 (2015). https://doi.org/10.1007/s10967-015-3977-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-3977-9

Keywords

Navigation