Skip to main content
Log in

Influence of pH, concentration and ionic strength during batch and flow-through continuous stirred reactor experiments of Sr2+-adsorption onto montmorillonite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Sorption/desorption experiments in batch and continous flow-through stirred reactor under different experimental conditions were carried out using montmorillonite (<2 μm clay fractions). The Sr2+ amount desorbed at pH 4 is only half of the amount desorbed at pH 8, revealing that the retention of Sr2+ onto montmorillonite was enhanced at pH 4. The largest adsorption value was obtained at pH 8.0 ([KNO3] = 10−3 mol/L) with q m = 41.49 mg Sr2+/g from the Langmuir isotherm. The gradient of concentration acted as an increasing driving force since the amount of Sr2+ adsorbed increased as increasing of Sr2+ concentration during the flow-through experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chegrouche S, Mellah A, Barkat M (2009) Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination 235(1–3):306–318

    Article  CAS  Google Scholar 

  2. Dimović S, Smičiklas I, Plećaš I, Antonović D (2009) Kinetic study of Sr(II) sorption by Bone Char. Sep Sci Technol 44:645–667

    Article  Google Scholar 

  3. Başçetin E, Atun G (2006) Adsorption behavior of strontium on binary mineral mixtures of montmorillonite and kaolinite. Appl Radiat Isot 64:957–964

    Article  Google Scholar 

  4. Khan SA, Riaz ur R, Khan MA (1995) Sorption of strontium on bentonite. Waste Manage 15:641–650

    Article  CAS  Google Scholar 

  5. Sureda R, Martínez-Lladó X, Rovira M, de Pablo J, Casas I, Giménez J (2010) Sorption of strontium on uranyl peroxide: implications for a high-level nuclear waste repository. J Hazard Mater 181(1–3):881–885

    Article  CAS  Google Scholar 

  6. Zhu YG, Shaw G (2000) Soil contamination with radionuclides and potential remediation. Chemosphere 41(1–2):121–128

    Article  CAS  Google Scholar 

  7. Environmental Protection Agency (2009) Contaminant occurrence support document for category 2—contaminants for the second six- year review of national primary drinking water regulations

  8. Chorover J, Choi S, Amistadi MK, Karthikeyan KG, Crosson G, Mueller KT (2003) Linking cesium and strontium uptake to kaolinite weathering in simulated tank waste leachate. Environ Sci Technol 37:2200–2208

    Article  CAS  Google Scholar 

  9. Syed Hakimi, Sakuma Syed A (1995) Competitive adsorption of 90Sr on soil sediments, pure clay phases and feldspar minerals. Appl Radiat Isot 46(5):287–292

    Article  Google Scholar 

  10. Nemes Z, Nagy NM, Kónya J (2005) Kinetics of strontium ion adsorption on natural clay samples. J Radioanal Nucl Chem 266(2):289–293

    Article  CAS  Google Scholar 

  11. Mahoney JJ, Langmuir D (1991) Adsorption of Sr on kaolinite, illite and montmorillonite at high ionic strengths. Radiochim Acta 54:139–144

    CAS  Google Scholar 

  12. Rafferty P, Shiao SY, Binz CM, Meyer RE (1981) Adsorption of Sr(II) on clay minerals: effect of salt concentration, loading and pH. J Inorg Nucl Chem 43:797–806

    Article  CAS  Google Scholar 

  13. Galamboš M, Kufčáková J, Rosskopfová O, Rajec P (2010) Adsorption of cesium and strontium on natrified bentonites. J Radioanal Nucl Chem 283(3):803–813

    Article  Google Scholar 

  14. Galamboš M, Rosskopfová O, Kufčáková J, Rajec P (2011) Utilization of Slovak bentonites in deposition of high-level radioactive waste and spent nuclear fuel. J Radioanal Nucl Chem 288(3):765–777

    Article  Google Scholar 

  15. Galamboš M, Osacký M, Rosskopfová O, Krajňák A, Rajec P (2012) Comparative study of strontium adsorption on dioctahedral and trioctahedral smectites. J Radioanal Nucl Chem 293(3):889–897

    Article  Google Scholar 

  16. Grolimund D, Borkovec M, Federer P, Sticher H (1995) Measurement of sorption isotherms with flow-through reactors. Environ Sci Technol 29:2317–2321

    Article  CAS  Google Scholar 

  17. Davis GA, Worrall WE (1971) The adsorption of water by clays. Trans Br Ceramic Soc 70:71–75

    CAS  Google Scholar 

  18. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  19. Sparks DL (2003) Environmental Soil Chemistry. Academic Press, San Diego

  20. Tertre E, Hubert F, Bruzac S, Pacreau M, Ferrage E, Prêt D (2013) Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: reactive-transport modeling, batch and stirred flow-through reactor experiments. Geochim Cosmochim Acta 112:1–19

    Article  CAS  Google Scholar 

  21. Selim HM (2012) Competitive sorption and transport of heavy metals in soils and geological media. Taylor & Francis, Boca Raton

  22. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  23. Ghaedi M, Jah AH, Khodadoust S, Sahraei R, Daneshfar A, Mihandoost A, Purkait MK (2012) Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow. Spectrochim Acta, Part A 90:22–27

    Article  CAS  Google Scholar 

  24. Rahman ROA, Ibrahim HA, Hanafy M, Monem NMA (2010) Assessment of synthetic zeolite Na A-X as sorbing barrier for strontium in a radioactive disposal facility. Chem Eng J 157(1):100–112

    Article  Google Scholar 

  25. Zhang SQ, Hou WG (2008) Adsorption behavior of Pb(II) on montmorillonite. Colloids Surf A Physicochem Eng Asp 320(1–3):92–97

    Article  CAS  Google Scholar 

  26. Baral SS, Das SN, Chaudhury GR, Swamy YV, Rath P (2008) Adsorption of Cr(VI) using thermally activated weed Salvinia cucullata. Chem Eng J 139:245–255

    Article  CAS  Google Scholar 

  27. Mall ID, Srivastava VC, Agarwal NK (2006) Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes Pigments 69(3):210–223

    Article  CAS  Google Scholar 

  28. Galamboš M, Krajňák A, Rosskopfová O, Viglašová E, Adamcová R, Rajec P (2013) Adsorption equilibrium and kinetic studies of strontium on Mg-bentonite, Fe-bentonite and illite/smectite. J Radioanal Nucl Chem 298(2):1031–1040

    Article  Google Scholar 

  29. Ames LLJ (1962) Kinetics of Cesium reactions with some inorganic cation exchange materials. Am Mineral 47:1067–1078

    CAS  Google Scholar 

  30. Bhattacharyya KG, Gupta SS (2006) Adsorption of Fe(III) from water by natural and acid activated clays: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption 12(3):185–204

    Article  CAS  Google Scholar 

  31. Bhattacharyya KG, Gupta SS (2008) Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: kinetic and thermodynamic study. Chem Eng J 136:1–13

    Article  CAS  Google Scholar 

  32. Susmita Sen G (2009) Treatment of water contaminated with Pb(II) and Cd(II) by adsorption on kaolinite, montmorillonite and their acid-activated forms. Indian J Chem Technol 16(6):457–470

    Google Scholar 

  33. Rahman I, Iwakabe K, Kawasaki J (2008) Laterite-A potential alternative for removal of groundwater Arsenic. J Appl Sci Environ Manage 12:93–100

    Google Scholar 

  34. Ekpete OAHJ, Spiff M (2012) Kinetics of Chlorophenol adsorption onto commercial and fluted pumpkin activated carbon in aqueous systems. Asian J Nat Appl Sci 1

  35. Eba FG, Eya’A-Mvongbote SA, Ondo JA, Yao BK, Ndong Nlo J, Kouya Biboutou R (2010) Evaluation of the absorption capacity of the natural clay from Bikougou (Gabon) to remove Mn(II) from aqueous solution. Int J Eng Sci Technol 2:5001–5016

    Google Scholar 

  36. Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes Pigments 51:25–40

    Article  CAS  Google Scholar 

  37. Jinsheng W, Rui Z, Yanguo T, Qinhong H, Zongjian S (2010) Sorption of strontium and fractal scaling of the heterogeneous media in a candidate VLLW disposal site. J Radioanal Nucl Chem 283:319–328

    Article  Google Scholar 

  38. Marimon MM (2002) On the Sorption and Diffusion of Radionuclides in Bentonite Clay. Royal Institute of Technology, Sweden

    Google Scholar 

  39. Parker A, Rae JE (1998) Environmental Interactions of Clays. Clays and the Environment, Springer

    Book  Google Scholar 

  40. Eslinger E, Pevear DR (1988) Clay minerals for petroleum geologists and engineers. SEPM

  41. Malatti MA, Mazza RJ, Sheren AJ, Tomkins DR (1974) The mechanism of adsorption of alkali metal ions on silica. Powder Technol 9:107–110

    Article  Google Scholar 

  42. Velde BB, Meunier A (2008) The origin of clay minerals in soils and weathered rocks. Springer, Berlin

  43. Howard JJ (1981) Lithium and potassium saturation of illite/smectite clays from interlaminated shales and sandstones. Clays Clay Miner 29:136–142

    Article  CAS  Google Scholar 

  44. Ho YS, McKay G (1998) A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ 76:332–340

    Article  CAS  Google Scholar 

  45. Coles CA, Yong RN (2006) Use of equilibrium and initial metal concentrations in determining Freundlich isotherms for soils and sediments. Eng Geol 85:19–25

    Article  Google Scholar 

  46. Kütahyali C, Çetinkaya B, Acar MB, Işik NO, Cireli T (2012) Investigation of strontium sorption onto Kula volcanics using central composite design. J Hazard Mater 201–202:115–124

    Article  Google Scholar 

  47. Oubagaranadin JUK, Murthy ZVP (2010) Isotherm modeling and batch adsorber design for the adsorption of Cu(II) on a clay containing montmorillonite. Appl Clay Sci 50(3):409–413

    Article  CAS  Google Scholar 

  48. Piccin JS, Gomes CS, Feris LA, Gutterres M (2012) Kinetics and isotherms of leather dye adsorption by tannery solid waste. Chem Eng J 183:30–38

    Article  CAS  Google Scholar 

  49. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N (2011) Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. Chem Eng J 172(1):37–46

    Article  CAS  Google Scholar 

  50. Akar ST, Yetimoglu Y, Gedikbey T (2009) Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification. Desalination 244(1–3):97–108

    Article  CAS  Google Scholar 

  51. Inglezakis VJ, Poulopoulos SG (2006) Adsorption, Ion Exchange and Catalysis. Elsevier, Amsterdam

    Google Scholar 

  52. Oladoja NAA CO, Oladimeji YB (2008) Kinetics and isotherm studies on methylene blue adsorption onto ground palm kernel coat. Turk J Eng Environ Sci 32:303

    Google Scholar 

  53. Atun G, Kaplan Z (1996) Influences of salt concentration, loading and pH on strontium adsorption. J Radioanal Nucl Chem 21:425–434

    Article  Google Scholar 

Download references

Acknowledgments

This is a contribution of KADRWaste PTDC/CTE-GEX/82678/2006 with finnancial support from the National Foundation of Science and Technology—Lisbon, Portugal. The first author thank to FCT-Lisbon for the PhD scholarship (SFRH/BD/79969/2011). The authors thank to two anonymous reviewers for comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iuliu Bobos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães, V., Azenha, M., Rocha, F. et al. Influence of pH, concentration and ionic strength during batch and flow-through continuous stirred reactor experiments of Sr2+-adsorption onto montmorillonite. J Radioanal Nucl Chem 303, 2243–2255 (2015). https://doi.org/10.1007/s10967-014-3709-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3709-6

Keywords

Navigation