Skip to main content
Log in

Hydrophilic 1,10-phenanthroline derivatives for selective Am(III) stripping into aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The novel and fully combustible hydrophilic 1,10-phenanthroline-2,9-dicarboxamide (1) was synthesized and investigated as Am(III) stripping agent in a simulated advanced hydrometallurgical process, in comparison with two other 1,10-phenanthroline-based ligands 2 and 3. The stripping efficiency and the Am(III)/lanthanides(III) selectivity of the TODGA (org)/phen-derivative (aq) extracting system were studied under several experimental conditions by liquid–liquid extraction tests. The results obtained clarify the main limitations of these ligands in the scope of the hydrometallurgical reprocessing but also enable to get indications to steer future investigations in the domain of the selective An(III) recovery for the advanced reprocessing of Spent Nuclear Fuel by hydrophilic ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Salvatores M, Palmiotti G (2011) Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges. Prog Part Nucl Phys 66:144–166

    Article  CAS  Google Scholar 

  2. Magill J, Berthou V, Haas D, Galy J, Schenkel R, Wiese HW, Heusener G, Thommasi J, Youinou G (2003) Impact limits of partitioning and transmutation scenarios on the radiotoxicity of actinides in radioactive waste. Nucl Energy 42:263–277

    CAS  Google Scholar 

  3. International Atomic Energy Agency, Technical Reports Series, no. 435, Vienna, Austria, 2004

  4. Bourg S, Caravaca C, Ekberg C, Hill C, Rhodes C (2009) ACSEPT, Toward the future demonstration of advanced fuel treatments. Proceedings of GLOBAL 2009, Paris, France, 6–11 Sept 2009 (Paper 9185)

  5. Madic C, Hudson MJ, Liljenzin JO, Glatz JP, Nannicini R, Facchini A, Kolarik Z, Odoj R (2000) New partitioning techniques for minor actinides. European Commission, Luxembourg, p 19149

    Google Scholar 

  6. Madic C, Testard F, Hudson MJ, Liljenzin JO, Christiansen B, Ferrando M, Facchini A, Geist A, Modolo G, Gonzalez-Espartero A, De Mendoza J (2004) PARTNEW—New solvent extraction processes for minor actinides, Commissariat á l’Énergie Atomique, France, CEA-R-6066

  7. Madic C, Hudson MJ, Baron P, Ouvrier N, Hill C, Arnaud F, Espartero AG, Desreux JF, Modolo G, Malmbeck R, Bourg S, De Angelis G, Uhlir J (2006) EUROPART Integrated Project, FISA Conference, Luxembourg

  8. Madic C, Boullis B, Baron P, Testard F, Hudson MJ, Liljenzin JO, Christiansen B, Ferrando M, Facchini A, Geist A, Modolo G, Espartero AG, De Mendoza J (2007) Futuristic back-end of the nuclear fuel cycle with the partitioning of minor actinides. J Alloys Comp 444–445:23–27

    Article  Google Scholar 

  9. Bourg S, Hill C, Caravaca C, Rhodes C, Ekberg C, Taylor R, Geist A, Modolo G, Cassayre L, Malmbeck V, Harrison M, de Angelis G, Espartero A, Bouvet S, Ouvrier N (2011) ACSEPT—Partitioning technologies and actinide science: towards pilot facilities in Europe. Nucl Eng Des 241:3427–3435

    Article  CAS  Google Scholar 

  10. Modolo G, Wilden A, Geist A, Magnusson D, Malmbeck R (2012) A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate. Radiochim Acta 100:715–725

    Article  CAS  Google Scholar 

  11. Brown J, Carrott MJ, Fox OD, Maher CJ, Mason C, McLachlan F, Sarsfield MJ, Taylor RJ (2010) Woodhead DA (2010) Screening of TODGA/TBP/OK solvent mixtures for the grouped extraction of actinides. IOP Conf Ser 9:012075. doi:10.1088/1757-899X/9/1/012075

    Article  Google Scholar 

  12. Miguirditchian M, Chareyre L, Hérès X, Hill C, Baron P, Masson M (2007) GANEX: Adaptation of the DIAMEX-SANEX process for the group actinide separation. Proceedings of GLOBAL 2007, Boise, Idaho, USA

  13. Adnet JM, Miguirditchian M, Hill C, Hérès X, Lecomte M, Masson M, Brossard P, Baron P (2005) Development of new hydrometallurgical processes for actinide recovery: GANEX concept. Proceedings of GLOBAL 2005, Tsukuba, Japan (Paper No.119)

  14. Aneheim E, Ekberg C, Foreman MRS, Löfström-Engdahl E, Mabile N (2012) Studies of a solvent for GANEX applications containing CyMe 4-BTBP and DEHBA in cyclohexanone. Sep Sci Technol 47:663–669

    Article  CAS  Google Scholar 

  15. Brown J, McLachlan F, Sarsfield M, Taylor R, Modolo G, Wilden A (2012) Plutonium loading of prospective grouped actinide extraction (GANEX) solvent systems based on diglycolamide extractants. Solvent Extr Ion Exch 30:127–141

    Article  CAS  Google Scholar 

  16. Diamond RM, Street K, Seaborg GT (1954) An ion-exchange study of possible hybridized 5f bonding in the actinides. J Am Chem Soc 76:1461–1469

    Article  CAS  Google Scholar 

  17. Nash KL (1994) In: Gschneider KAJr, Eyring L, Choppin GR, Lander GH (eds) Handbook on the physics and chemistry of rare earths, Vol 18. Amsterdam, p 197

  18. Alexander V (1995) Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides. Chem Rev 95:273–342

    Article  CAS  Google Scholar 

  19. Kolarik Z (2008) Complexation and separation of lanthanides(III) and actinides(III) by heterocyclic N-donors in solutions. Chem Rev 108:4208–4252

    Article  CAS  Google Scholar 

  20. Ekberg C, Fermvik A, Retegan T, Skarnemark G, Foreman MRS, Hudson MJ, Englund S, Nilsson M (2008) An overview and historical look back at the solvent extraction using nitrogen donor ligands to extract and separate An(III) from Ln(III). Radiochim Acta 96:225–233

    Article  CAS  Google Scholar 

  21. Hudson MJ, Harwood LM, Valentine D, Lewis FW (2013) Use of soft heterocyclic n-donor ligands to separate actinides and lanthanides. Inorg Chem 52:3414–3428

    Article  CAS  Google Scholar 

  22. Geist A, Mullich A, Magnusson D, Kaden P, Modolo G, Wilden A, Zevaco T (2012) Actinide(III)/Lanthanides(III) separation via selective aqueous complexation of actinides(III) using a hydrophilic 2,6bis(1,2,4-triazin-3-yl)-pirydine in nitric acid. Solv Extr Ion Exch 30:433–444

    Article  CAS  Google Scholar 

  23. Foreman M, Hudson MJ, Drew M, Hill C, Madic C (2006) Complexes formed between the quadridentate, heterocyclic molecules 6,6-bis-(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2-bipyridine (BTBP) and lanthanides(III): implications for the partitioning of actinides(III) and lanthanides(III). Dalton Trans 13:1645–1653

    Article  Google Scholar 

  24. Geist A, Hill C, Modolo G, Foreman MRS, Weigl M, Gompper K, Hudson MJ (2006) 6,6′-Bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1, 2, 4]triazin-3-yl)[2,2′]bipyridine, an effective extracting agent for the separation of americium(III) and curium(III) from the lanthanides. Solvent Extr Ion Exch 24:463–483

    Article  CAS  Google Scholar 

  25. Magnusson D, Christiansen B, Foreman MRS, Geist A, Glatz JP, Malmbeck R, Modolo G, Serrano-Purroy D, Sorel C (2009) Demonstration of a SANEX process in centrifugal contactors using the CyMe4-BTBP molecule on a genuine fuel solution. Solvent Extr Ion Exch 27:97–106

    Article  CAS  Google Scholar 

  26. Lewis FW, Harwood LM, Hudson MJ, Drew MGB, Desreux JF, Vidick G, Bouslimani N, Modolo G, Wilden A, Sypula M, Vu TH, Simonin JP (2011) Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand. J Am Chem Soc 133:13093–13102

    Article  CAS  Google Scholar 

  27. Bencini A, Lippolis V (2010) 1,10-Phenanthroline: versatile building blocks for the construction of ligands for various purposes. Coord Chem Rev 254:2096–2180

    Article  CAS  Google Scholar 

  28. Sammes PG, Yahioglu G (1994) 1,10-Phenanthroline: a versatile ligand. Chem Soc Rev 23:327–334

    Article  CAS  Google Scholar 

  29. Luman CR, Castellano FN (2004) Comprehensive coordination chemistry II, Vol. 1. McCleverty JA, Meyer TJ, Eds., Elsevier, Oxford, pp. 25–39

  30. Accorsi G, Listorti A, Yoosaf K, Armaroli N (2009) 1,10 Phenanthroline: versatile building blocks for luminescence molecules, materials and metal complexes. Chem Soc Rev 38:1690–1700

    Article  CAS  Google Scholar 

  31. Xiao CL, Wang CZ, Yuan LY, Li B, He H, Wang S, Zhao YL, Chai ZF, Shi WQ (2014) Excellent Selectivity for Actinides with a Tetradentate 2,9-Diamide-1,10-Phenanthroline Ligand in Highly Acidic Solution: A Hard—Soft Donor Combined Strategy. Inorg Chem 53:1712–1720

    Article  CAS  Google Scholar 

  32. Bisson J, Dehaudt J, Charbonnel MC, Guillaneux D, Miguirditchian M, Marie C, Boubals N, Dutech G, Pipelier M, Blot V, Dubreuil D (2014) 1,10-phenantroline and non-symmetrical 1,3,5-triazine dipicolinamide-based ligands for group Actinide extraction. Chem A Eur J 20:7819–7829

    Article  CAS  Google Scholar 

  33. Bisson J, Berthon C, Berthon L, Boubals N, Dubreuil D, Charbonnel MC (2012) Effect of the structure of Amido-polynitrogen Molecules on the complexation of Actinides. Procedia Chem 7:13–19

    Article  CAS  Google Scholar 

  34. Dean NE, Hancock RD, Cahill CL, Frisch M (2008) Affinity of the highly preorganized ligand PDA (1,10-phenanthroline-2,9-dicarboxylic acid) for large metal ions of higher charge. A crystallographic and thermodynamic study of PDA complexes of Thorium(IV) and the Uranyl(VI) ion. Inorg Chem 47:2000–2010

    Article  CAS  Google Scholar 

  35. Melton DL, VanDerveer DG, Hancock RD (2006) Complexes of Greatly Enhanced Thermodynamic Stability and Metal Ion Size-Based Selectivity, Formed by the Highly Preorganized Non-Macrocyclic Ligand 1,10-Phenanthroline-2,9-dicarboxylic Acid. A Thermodynamic and Crystallographic Study. Inorg Chem 45:9306–9314

    Article  CAS  Google Scholar 

  36. Gephart RT, Williams NJ, Reibenspies JH, De Sousa AS, Hancock RD (2008) Metal ion complexing properties of the highly preorganized ligand 2,9-bis(hydroxymethyl)-1,10-phenanthroline: A crystallographic and thermodynamic study. Inorg Chem 47:10342–10348

    Article  CAS  Google Scholar 

  37. Gephart RT, Williams NJ, Reibenspies JH, De Sousa AS, Hancock RD (2009) Complexation of metal ions of higher charge by the highly preorganized tetradentate ligand 2,9-bis(hydroxymethyl)-1,10-phenanthroline. A crystallographic and thermodynamic study. Inorg Chem 48:8201–8209

    Article  CAS  Google Scholar 

  38. Williams NJ, Balance DG, Reibenspies JH, Hancock RD (2010) Complexes of the highly preorganized ligand PDALC (2,9-bis(hydroxymethyl)-1,10-phenanthroline) with trivalent lanthanides. A thermodynamic and crystallographic study. Inorg Chim Acta 363:3694–3699

    Article  CAS  Google Scholar 

  39. Merrill D, Hancock RD (2011) Metal ion selectivities of the highly preorganized tetradentate ligand 1,10-phenanthroline-2,9-dicarboxamide with lanthanide(III) ions and some actinide ions. Radiochim Acta 99:161–166

    Article  CAS  Google Scholar 

  40. Zong R, Thummel RP (2004) 2,9-Di-(2′-pyridyl)-1,10-phenanthroline: A tetradentate ligand for Ru(II). J Am Chem Soc 126:10800–10801

    Article  CAS  Google Scholar 

  41. Cockrell GM, Zhang G, VanDerveer DG, Thummel RP, Hancock RD (2008) Enhanced metal ion selectivity of 2,9-Di-(pyrid-yl)-1,10-phenanthroline and its use as a fluorescent sensor for Cadmium (II). J Am Chem Soc 130:1420–1430

    Article  CAS  Google Scholar 

  42. Karmazin L, Mazzanti M, Gateau C, Hill C, Pécaut J (2002) The important effect of ligand architecture on the selectivity of metal ion recognition in An(III)/Ln(III) separation with N-donor extractants. Chem Commun 23:2892–2893

    Article  Google Scholar 

  43. Boone L, Mroz AE, VanDerveer DG, Hancock RD (2011) Metal ion coordinating properties of the highly preorganized tetradentate ligand 1,10-phenanthroline-2,9-dicarboxaldehyde-2,9-dioxime. Eur J Inorg Chem 17:2706–2711

    Article  Google Scholar 

  44. Galletta M, Baldini L, Sansone F, Ugozzoli F, Ungaro R, Casnati A, Mariani M (2010) Calix[6]arene-picolinamide extractants for radioactive waste: effect of modification of the basicity of the pyridine N atom on the extraction efficiency and An/Ln separation. Dalton Trans 39:2546–2553

    Article  CAS  Google Scholar 

  45. Macerata E, Castiglione F, Panzeri W, Mariani M, Sansone F, Casnati A, Mele A (2010) Assessing the mechanism of the synergistic action of calixarenes and Co-dicarbollides in lanthanide extractions. New J Chem 34:2552–2557

    Article  CAS  Google Scholar 

  46. Macerata E, Sansone F, Baldini L, Ugozzoli F, Brisach F, Haddaoui J, Hubscher-Bruder V, Arnaud-Neu F, Mariani M, Ungaro R, Casnati A (2010) Calix[6]arene-picolinamide extractants for radioactive waste treatment: effect of additional carboxy binding sites in the pyridine 6-positions on complexation, extraction efficiency and An/Ln separation. Eur J Org Chem 14:2675–2686

    Article  Google Scholar 

  47. Galletta M, Scaravaggi S, Macerata E, Famulari N, Mele A, Panzeri W, Sansone F, Casnati A, Mariani M (2013) 2,9-Dicarbonyl-1,10-phenanthroline derivatives with unprecedented Am(III)/Eu(III) selectivity under highly acidic conditions. Dalton Trans 42:16930–16938

    Article  CAS  Google Scholar 

  48. Baldoli C, Rigamonti C, Maiorana S, Licandro E, Falciola L, Mussini PR (2006) A new triferrocenyl tris(hydroxymethyl)aminomethane derivative as a highly sensitive electrochemical marker of biomolecules: application to the labelling of PNA monomers and their electrochemical characterization. Chem A Eur J 12:4091–4100

    Article  CAS  Google Scholar 

  49. Chandler CJ, Deady LW, Reiss JA (1981) Synthesis of some 2,9-disubstituted-1,10-phenanthroline. J Heterocycl Chem 18:599

    Article  CAS  Google Scholar 

  50. De Cian A, DeLemos E, Mergny JL, Teulade-Fichou MP, Monchaud D (2007) Highly efficient G quadruplex recognition by bisquinolinium compounds. J Am Chem Soc 129:1856–1857

    Article  Google Scholar 

  51. Magnusson D, Christiansen B, Glatz JP, Malmbeck R, Modolo G, Serrano-Purroy D, Sorel C (2009) Demonstration of a TODGA based extraction process for the partitioning of minor actinides from a PUREX raffinate. Solvent Extr Ion Exch 27:26–35

    Article  CAS  Google Scholar 

  52. Gujar RB, Ansari SA, Murali MS, Mohapatra PK, Manchanda VK (2010) Comparative evaluation of two substituted diglycolamide extractants for ‘actinide partitioning’. J Radioanal Nucl Chem 284:377–385

    Article  CAS  Google Scholar 

  53. Geist A (2010) Extraction of nitric acid into alcohol: kerosene mixtures. Solvent Extr Ion Exch 28:596–607

    Article  CAS  Google Scholar 

  54. Geist A, Modolo G (2009) TODGA process development: an improved solvent formulation. Proceedings of GLOBAL 2009, Paris (France), Paper 9193, pp 1022–1026

Download references

Acknowledgments

Financial support from the Nuclear Fission Safety Program of the European Union is gratefully acknowledged (Project ACSEPT, Contract No. FP7-CP-2007-211 267). We also thank the Centro Interdipartimentale di Misure “G. Casnati” at Università di Parma for the use of NMR facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Macerata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scaravaggi, S., Macerata, E., Galletta, M. et al. Hydrophilic 1,10-phenanthroline derivatives for selective Am(III) stripping into aqueous solutions. J Radioanal Nucl Chem 303, 1811–1820 (2015). https://doi.org/10.1007/s10967-014-3668-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3668-y

Keywords

Navigation