Skip to main content
Log in

Degradation of a cobalt(II)–EDTA complex by photocatalysis and H2O2/UV-C. Application to nuclear wastes containing 60Co

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The 60Co present in some low-level effluents forms complexes with organic ligands such as ethylenediaminetetraacetic acid (EDTA). These complexes make it difficult to remove the 60Co using conventional filtration methods. The aim of this study was to test the use of titanium-based photocatalysis (TiO2/UV) and photochemical methods involving the use of oxidation agents (H2O2/UV-C) (both of which are advanced oxidation processes) to degrade EDTA and recover 60Co once it has been released from the complex. In preliminary experiments on the 59Co-EDTA complex, we tested the efficiency of the TiO2/UV and H2O2/UV-C processes as means of degrading EDTA molecules and releasing cobalt in its cationic forms Co2+ and Co3+. These cations can be trapped by either precipitating and/or adsorbing them on TiO2 depending on the pH. When this treatment was applied experimentally to radioactive wastes, it turned out to be highly effective since it improved the decontamination factor (DF: initial volumic activity/final volumic activity) twofold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ojovan MI, Lee WE (2014) Treatment of radioactive wastes. An introduction to nuclear waste immobilisation, 2nd edn. Elsevier, Oxford, pp 171–203

    Chapter  Google Scholar 

  2. Khayet M (2013) Treatment of radioactive wastewater solutions by direct contact membrane distillation using surface modified membranes. Desalination 321:60–66

    Article  CAS  Google Scholar 

  3. Valsala TP, Sonavane MS, Kore SG, Sonar NL, De V, Raghavendra Y, Chattopadyaya S, Dani U, Kulkarni Y, Changrani RD (2011) Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products. J Hazard Mater 196:22–28

    Article  CAS  Google Scholar 

  4. Granados F, Bertin V, Bulbulian S, Solache-Ríos M (2006) 60Co aqueous speciation and pH effect on the adsorption behavior on inorganic materials. Appl Radiat Isot 64(3):291–297

    Article  CAS  Google Scholar 

  5. Seliverstov AF, Lagunova YO, Ershov BG, Gelis VM, Basiev AG (2009) Recovery of radioactive cobalt from aqueous EDTA solutions using concentrated ozone. Radiochemistry 51(3):326–328

    Article  CAS  Google Scholar 

  6. Granados Correa F, Jiménez-Becerril J (2004) Adsorption of 60Co2+ on hydrous manganese oxide powder from aqueous solution. Radiochim Acta 92(2–2004):105–110

    Article  Google Scholar 

  7. Malinen LK, Koivula R, Harjula R (2009) Sorption of radiocobalt and its EDTA complex on titanium antimonates. J Hazard Mater 172(2–3):875–879

    Article  CAS  Google Scholar 

  8. Harjula R, Kelokaski M, Leinonen H (2010) Sorption of radiocobalt and other activation product radionuclides on titanium oxide material CoTreat®. Radiochim Acta Int J Chem Asp Nucl Sci Technol 98(6):341

    CAS  Google Scholar 

  9. Jardine PM, Taylor DL (1995) Kinetics and mechanisms of Co(II) EDTA oxidation by pyrolusite. Geochim Cosmochim Acta 59(20):4193–4203

    Article  CAS  Google Scholar 

  10. Mendham J, Denney RC, Barnes JD, Thomas MJK (2005) Analyse chimique quantitative de Vogel. 1ère Edition edn. De Boeck

  11. Rosíková K, John J, Šebesta F (2003) Separation of radionuclides from chemical and electrochemical decontamination wastes. J Radioanal Nucl Chem 255(2):397–402

    Article  Google Scholar 

  12. Hooper EW (2000) Some recent studies on aqueous waste treatment involving inorganic absorbers. J Radioanal Nucl Chem 246(3):479–486

    Article  CAS  Google Scholar 

  13. Seshadri H, Sinha PK (2012) Efficient decomposition of liquid waste containing EDTA by advanced oxidation nanotechnology. J Radioanal Nucl Chem 292(2):829–835

    Article  CAS  Google Scholar 

  14. Dhananjeyan MR, Annapoorani R, Lakshmi S, Renganathan R (1996) An investigation on TiO2-assisted photo-oxidation of thymine. J Photochem Photobiol A 96(1):187–191

    Article  CAS  Google Scholar 

  15. Dorfman LM, Adams GE (1973) Reactivity of the Hydroxyl Radical in aqueous solutions. Vol Report No. NSRDS-NBS-46. National Bureau of Standards, Report No. NSRDS-NBS-46

  16. Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53(1):115–129

    Article  CAS  Google Scholar 

  17. Herrmann JM (2005) Heterogeneous photocatalysis: state of the art and present applications. Top Catal 34(1):49–65

    Article  CAS  Google Scholar 

  18. Carrier M, Perol N, Herrmann J-M, Bordes C, Horikoshi S, Paisse JO, Baudot R, Guillard C (2006) Kinetics and reactional pathway of Imazapyr photocatalytic degradation Influence of pH and metallic ions. Appl Catal B 65(1–2):11–20

    Article  CAS  Google Scholar 

  19. Vohra MS, Davis AP (1998) Adsorption of Pb(II), EDTA, and Pb(II)-EDTA onto TiO2. J Colloid Interface Sci 198(1):18–26

    Article  CAS  Google Scholar 

  20. Kwang-Rag K, Sung-Ho L, Seung-Woo P, Hongsuk C, Jae-Hyung Y (1998) Adsorption of cobalt(II) ion by titanium-based oxides in high temperature water. Korean J Chem Eng 16(1):34

    Google Scholar 

  21. Kim KR, Kim UC (1998) Adsorption of cobalt(II) ion on anhydrous titanium dioxide at elevated temperature. J Ind Eng Chem 4(4):270–276

    CAS  Google Scholar 

  22. Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water-treatment. Chem Rev 93(2):671–698

    Article  CAS  Google Scholar 

  23. Baxendale JH, Wilson JA (1957) The photolysis of hydrogen peroxide at high light intensities. Trans Faraday Soc 53:344–356

    Article  CAS  Google Scholar 

  24. Alfano OM, Brandi RJ, Cassano AE (2001) Degradation kinetics of 2,4-D in water employing hydrogen peroxide and UV radiation. Chem Eng J 82(1–3):209–218

    Article  CAS  Google Scholar 

  25. Uri N (1952) Inorganic free radicals in solution. Chem Rev 50(3):375–454

    Article  CAS  Google Scholar 

  26. Eaton DR, Suart SR (1968) Electron spin resonance studies of the photooxidation and reduction of cobalt complexes. J Phys Chem 72(2):400–405

    Article  CAS  Google Scholar 

  27. Gaudaire J-M, GENET M (1999) Etude de la spéciation du 60Co dans les effluents de l’usine de retraitement de combustibles irradiés de La Hague et de son devenir après rejet dans les eaux de la Manche. Thèse de doctorat (N°1999PA112068), Université de Paris 11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia Lepeytre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekab, K., Lepeytre, C., Goettmann, F. et al. Degradation of a cobalt(II)–EDTA complex by photocatalysis and H2O2/UV-C. Application to nuclear wastes containing 60Co. J Radioanal Nucl Chem 303, 131–137 (2015). https://doi.org/10.1007/s10967-014-3311-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3311-y

Keywords

Navigation