Skip to main content
Log in

234Th-derived particulate organic carbon export in the Prydz Bay, Antarctica

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

234Th activities in sea water were measured using Fe(OH)3 co-precipitation and beta counting at six stations in Prydz Bay in March 2008 during the 24th Chinese National Antarctic Research Expedition. Total 234Th activities ranged from 0.96 to 2.44 dpm L−1 with an average of 1.61 dpm L−1, showing an apparent deficit with respect to 238U due to scavenging and export with particles. With a one-dimensional steady state model, 234Th export fluxes were converted to particulate organic carbon (POC) export using bottle ratios of POC concentrations to particulate 234Th activities on suspended particles. POC fluxes at the depth of 100 m varied between 33 and 297 mmol m−2 day−1, comparable to prior work in the same region and higher than those of some other sea areas in the Southern Ocean, and indicated efficient running of biological pump in Prydz Bay. The results could be helpful to expand the knowledge of carbon cycle in seasonally ice-covered coastal regions around Antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McCarthy JJ, Brewer PG, Feldman G (1986) Global ocean flux. Oceanus 29:16–26

    Google Scholar 

  2. Murphy PP, Feely RA, Gammon RH et al (1991) Assessment of the air-sea exchange of CO2 in the south Pacific during austral autumn. J Geophys Res Oceans 96:20455–20465. doi:10.1029/91JC02064

    Article  CAS  Google Scholar 

  3. Takahashi T, Sutherland SC, Sweeney C et al (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res Part II 49:1601–1622. doi:10.1016/S0967-0645(02)00003-6

    Article  CAS  Google Scholar 

  4. Roy T, Rayner P, Matear R, Francey R (2003) Southern hemisphere ocean CO2 uptake: reconciling atmospheric and oceanic estimates. Tellus B 55:701–710. doi:10.1034/j.1600-0889.2003.00058.x

    Article  Google Scholar 

  5. Arrigo KR, van Dijken G, Long M (2008) Coastal southern ocean: a strong anthropogenic CO2 sink. Geophys Res Lett 35:L23602. doi:10.1029/2008GL035624

    Article  Google Scholar 

  6. Boning CW, Dispert A, Visbeck M et al (2008) The response of the Antarctic circumpolar current to recent climate change. Nat Geosci 1:864–869. doi:10.1038/ngeo362

    Article  Google Scholar 

  7. Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680. doi:10.1038/282677a0

    Article  Google Scholar 

  8. Buesseler K, Ball L, Andrews J et al (1998) Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234. Deep Sea Res Part II 45:2461–2487. doi:10.1016/S0967-0645(98)80022-2

    Article  CAS  Google Scholar 

  9. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

    Article  CAS  Google Scholar 

  10. Rutgers Van Der Loeff MM, Friedrich J, Bathmann UV (1997) Carbon export during the spring bloom at the Antarctic polar front, determined with the natural tracer 234Th. Deep Sea Res Part Ii 44:457–478. doi:10.1016/S0967-0645(96)00067-7

    Article  CAS  Google Scholar 

  11. Rutgers van der Loeff MM, Buesseler K, Bathmann U et al (2002) Comparison of carbon and opal export rates between summer and spring bloom periods in the region of the Antarctic Polar Front, SE Atlantic. Deep Sea Res Part II 49:3849–3869. doi:10.1016/S0967-0645(02)00114-5

    Article  CAS  Google Scholar 

  12. Buesseler KO, Ball L, Andrews J et al (2001) Upper ocean export of particulate organic carbon and biogenic silica in the Southern Ocean along 170°W. Deep Sea Res Part II 48:4275–4297. doi:10.1016/S0967-0645(01)00089-3

    Article  CAS  Google Scholar 

  13. Cochran JK, Buesseler KO, Bacon MP et al (2000) Short-lived thorium isotopes (234Th, 228Th) as indicators of POC export and particle cycling in the Ross Sea, Southern Ocean. Deep Sea Res Part II 47:3451–3490. doi:10.1016/S0967-0645(00)00075-8

    Article  CAS  Google Scholar 

  14. Friedrich J, Rutgers van der Loeff MM (2002) A two-tracer (210Po–234Th) approach to distinguish organic carbon and biogenic silica export flux in the Antarctic Circumpolar Current. Deep Sea Res Part Ocean Res Pap 49:101–120. doi:10.1016/S0967-0637(01)00045-0

    Article  CAS  Google Scholar 

  15. Trull TW, Bray SG, Manganini SJ et al (2001) Moored sediment trap measurements of carbon export in the Subantarctic and Polar Frontal zones of the Southern Ocean, south of Australia. J Geophys Res Oceans 106:31489–31509. doi:10.1029/2000JC000308

    Article  CAS  Google Scholar 

  16. Coppola L, Roy-Barman M, Mulsow S et al (2005) Low particulate organic carbon export in the frontal zone of the Southern Ocean (Indian sector) revealed by 234Th. Deep Sea Res Part Ocean Res Pap 52:51–68. doi:10.1016/j.dsr.2004.07.020

    Article  CAS  Google Scholar 

  17. Buesseler KO, Andrews JE, Pike SM et al (2005) Particle export during the Southern Ocean Iron Experiment (SOFeX). Limnol Ocean 50:311–327. doi:10.4319/lo.2005.50.1.0311

    Article  CAS  Google Scholar 

  18. Morris PJ, Sanders R, Turnewitsch R, Thomalla S (2007) 234Th-derived particulate organic carbon export from an island-induced phytoplankton bloom in the Southern Ocean. Deep Sea Res Part II 54:2208–2232. doi:10.1016/j.dsr2.2007.06.002

    Article  CAS  Google Scholar 

  19. Blain S, Quéguiner B, Trull T (2008) The natural iron fertilization experiment KEOPS (KErguelen ocean and plateau compared study): an overview. Deep Sea Res Part II 55:559–565. doi:10.1016/j.dsr2.2008.01.002

    Article  Google Scholar 

  20. Ducklow HW, Erickson M, Kelly J et al (2008) Particle export from the upper ocean over the continental shelf of the west Antarctic Peninsula: a long-term record, 1992–2007. Deep Sea Res Part Ii Top Stud Ocean 55:2118–2131. doi:10.1016/j.dsr2.2008.04.028

    Article  Google Scholar 

  21. He J, Ma H, Liqi Chen et al (2008) The investigation on particulate organic carbon fluxes with disequilibria between thorium-234 and uranium-238 in the Prydz Bay, the Southern Ocean. Acta Ocean Sin 27:21–29

    Google Scholar 

  22. Yang W, Huang Y, Chen M et al (2009) Export and remineralization of POM in the Southern Ocean and the South China Sea estimated from 210Po/210Pb disequilibria. Chin Sci Bull 54:2118–2123. doi:10.1007/s11434-009-0043-4

    Article  CAS  Google Scholar 

  23. Smith NR, Zhaoqian D, Kerry KR, Wright S (1984) Water masses and circulation in the region of Prydz Bay, Antarctica. Deep Sea Res Part Ocean Res Pap 31:1121–1147. doi:10.1016/0198-0149(84)90016-5

    Article  Google Scholar 

  24. Zhang F, Ma Y, Lin L, He J (2012) Hydrophysical correlation and water mass indication of optical physiological parameters of picophytoplankton in Prydz Bay during autumn 2008. J Microbiol Methods 91:559–565. doi:10.1016/j.mimet.2012.09.030

    Article  Google Scholar 

  25. Yang Q, Tian J, Zhao W, Xie L (2013) Turbulent dissipation and mixing in Prydz Bay. Chin J Ocean Limnol 31:445–453. doi:10.1007/s00343-013-2040-3

    Article  Google Scholar 

  26. Bates NR (2006) Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean. J Geophys Res Oceans 111:C10013. doi:10.1029/2005JC003083

    Article  Google Scholar 

  27. Roden NP, Shadwick EH, Tilbrook B, Trull TW (2013) Annual cycle of carbonate chemistry and decadal change in coastal Prydz Bay east Antarctica. Mar Chem. doi:10.1016/j.marchem.2013.06.006

    Google Scholar 

  28. Waples JT, Benitez-Nelson C, Savoye N et al (2006) An introduction to the application and future use of 234Th in aquatic systems. Mar Chem 100:166–189. doi:10.1016/j.marchem.2005.10.011

    Article  CAS  Google Scholar 

  29. Buesseler KO, Benitez-Nelson CR, Moran SB et al (2006) An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy. Mar Chem 100:213–233. doi:10.1016/j.marchem.2005.10.013

    Article  CAS  Google Scholar 

  30. Bhat SG, Krishnaswamy S, Lal D et al (1968) 234Th/238U ratios in the ocean. Earth Planet Sci Lett 5:483–491. doi:10.1016/S0012-821X(68)80083-4

    Article  Google Scholar 

  31. Buesseler KO, Benitez-Nelson C, Rutgers van der Loeff M et al (2001) An intercomparison of small- and large-volume techniques for thorium-234 in seawater. Mar Chem 74:15–28. doi:10.1016/S0304-4203(00)00092-X

    Article  CAS  Google Scholar 

  32. Van der Loeff MR, Sarin MM, Baskaran M et al (2006) A review of present techniques and methodological advances in analyzing 234Th in aquatic systems. Mar Chem 100:190–212. doi:10.1016/j.marchem.2005.10.012

    Article  Google Scholar 

  33. Zeng X, Qiu M, Yin M et al (2007) An in situ analysis and measurement of thorium-234, uranium isotopes in seawater. Acta Ocean Sin 26:73–83

    CAS  Google Scholar 

  34. Ku T-L, Knauss KG, Mathieu GG (1977) Uranium in open ocean: concentration and isotopic composition. Deep Sea Res 24:1005–1017. doi:10.1016/0146-6291(77)90571-9

    Article  CAS  Google Scholar 

  35. Chen JH, Lawrence Edwards R, Wasserburg GJ (1986) 238U, 234U and 232Th in seawater. Earth Planet Sci Lett 80:241–251. doi:10.1016/0012-821X(86)90108-1

    Article  CAS  Google Scholar 

  36. Not C, Brown K, Ghaleb B, Hillaire-Marcel C (2012) Conservative behavior of uranium versus salinity in Arctic sea ice and brine. Mar Chem 130–131:33–39. doi:10.1016/j.marchem.2011.12.005

    Article  Google Scholar 

  37. Zhou K, Nodder SD, Dai M, Hall JA (2012) Insignificant enhancement of export flux in the highly productive subtropical front, east of New Zealand: a high resolution study of particle export fluxes based on 234Th:238U disequilibria. Biogeosciences 9:973–992. doi:10.5194/bg-9-973-2012

    Article  CAS  Google Scholar 

  38. Pates JM, Muir GKP (2007) U-salinity relationships in the mediterranean: implications for 234Th:238U particle flux studies. Mar Chem 106:530–545. doi:10.1016/j.marchem.2007.05.006

    Article  CAS  Google Scholar 

  39. Coale KH, Bruland KW (1987) Oceanic stratified euphotic zone as elucidated by 234Th: 238U disequilibria. Limnol Ocean 32:185–200

    Article  Google Scholar 

  40. Savoye N, Benitez-Nelson C, Burd AB et al (2006) 234Th sorption and export models in the water column: a review. Mar Chem 100:234–249. doi:10.1016/j.marchem.2005.10.014

    Article  CAS  Google Scholar 

  41. Buesseler KO, Bacon MP, Kirk Cochran J, Livingston HD (1992) Carbon and nitrogen export during the JGOFS North Atlantic Bloom experiment estimated from 234Th:238U disequilibria. Deep Sea Res Part Ocean Res Pap 39:1115–1137. doi:10.1016/0198-0149(92)90060-7

    Article  CAS  Google Scholar 

  42. Cai P, Dai M, Chen W et al (2006) On the importance of the decay of 234Th in determining size-fractionated C/234Th ratio on marine particles. Geophys Res Lett 33:L23062. doi:10.1029/2006GL027792

    Google Scholar 

  43. Rutgers van der Loeff M, Cai PH, Stimac I et al. (2011) 234Th in surface waters: distribution of particle export flux across the Antarctic Circumpolar Current and in the Weddell Sea during the GEOTRACES expedition ZERO and DRAKE. Deep Sea Res Part II Top Stud Ocean 58:2749–2766. doi:10.1016/j.dsr2.2011.02.004

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (11205094, 41106167 and 41076134) and Tsinghua University Initiative Scientific Research Program (2010Z07108). We appreciate the assistance of Jiuxin Shi, Renfeng Ge, Chuanyu Hu and other colleagues of 24th Chinese National Antarctic Research Expedition with CTD data and sample collection. We also give thanks to Wenliang Wei and Quan Shen along with the crew of the R/V Xuelong for their help during the cruise. We are grateful to two anonymous reviewers for their constructive comments on manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, H., Zeng, Z., He, J. et al. 234Th-derived particulate organic carbon export in the Prydz Bay, Antarctica. J Radioanal Nucl Chem 299, 621–630 (2014). https://doi.org/10.1007/s10967-013-2842-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2842-y

Keywords

Navigation