Skip to main content
Log in

Soil-to-mushroom transfer of 137Cs, 40K, alkali–alkaline earth element and heavy metal in forest sites of Izmir, Turkey

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present work is devoted to an investigation on the soil to mushroom transfer parameters for 137Cs and 40K radionuclides, as well as for some stable elements and heavy metals. The results of transfer factors for 137Cs and 40K were within the range of 0.06–3.15 and 0.67–5.68, respectively and the most efficiently transferred radionuclide was 40K. The TF values for 137Cs typically conformed to a lognormal distribution, while for 40K showed normal distribution. Statistically significant correlations between 137Cs soil to mushroom transfer factors and agrochemical soil properties have been revealed. Although the concentration ratios varied within the species, the most efficiently transferred elements seems to have been K, followed by Rb, Zn, Cu, Cd, S, Cs and Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kalac P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281

    Article  CAS  Google Scholar 

  2. Duff MC, Mary Lou Ramsey ML (2008) Accumulation of radiocesium by mushrooms in the environment: a literature review. J Environ Radioact 99:912–932

    Article  CAS  Google Scholar 

  3. Mascanzoni D (2009) Long-term transfer of 137Cs from soil to mushrooms in a semi-natural environment. J Radioanal Nucl Chem 282:427–431

    Article  CAS  Google Scholar 

  4. Vinichuk M, Taylor AFS, Rosén K, Johanson KJ (2010) Accumulation of potassium, rubidium and caesium (133Cs and 137Cs) in various fractions of soil and fungi in a Swedish forest. Sci Total Environ 408:2543–2548

    Article  CAS  Google Scholar 

  5. Karadeniz Ö, Yaprak G (2010) 137Cs, 40K, alkali–alkaline earth element and heavy metal concentrations in wild mushrooms from Turkey. J Radioanal Nucl Chem 285:611–619

    Article  CAS  Google Scholar 

  6. Kaduka MV, Shutov VN, Bruk GYa, Balonov MI, Brown JE, Strand P (2006) Soil-dependent uptake of 137Cs by mushrooms: experimental study in the Chernobyl accident areas. J Environ Radioact 89:199–211

  7. Shutov VN, Bruk GYa, Basalaeva LN, Vasilevitskiy VA, Ivanova NP, Kaplun IS (1996) The role of mushrooms and berries in the formation of internal exposure doses to the population of Russia after the Chenrnobyl accident. Radiat Prot Dosim 67(1):55–64

  8. Fesenko SV, Soukhova NV, Sanzharova NI, Avila R, Spiridonov SI, Klein D, Badot PM (2001) 137Cs availability for soil to understory transfer in different types of forest ecosystems. Sci Total Environ 269:87–103

    Google Scholar 

  9. Stemmer M, Hromatka A, Lettner H, Strebl F (2005) Radiocesium storage in soil microbial biomass of undisturbed alpine meadow soils and its relation to 137Cs soil–plant transfer. J Environ Radioact 79:107–118

    Google Scholar 

  10. Baeza A, Guillén J, Bernedo JM (2005) Soil-fungi transfer coefficients: importance of the location of mycelium in soil and of the differential availability of radionuclides in soil fractions. J Environ Radioact 81:89–106

    Google Scholar 

  11. Malinowska E, Szefer P, Bojanowski R (2006) Radionuclides content in Xerocomus badius and other commercial mushrooms from several regions of Poland. Food Chem 97:19–24

    Google Scholar 

  12. Karadeniz Ö, Yaprak G (2007) Dynamic equilibrium of radiocesium with stable cesium within the soil-mushroom system in Turkish pine forest. Environ Pollut 148:316–324

    Google Scholar 

  13. Wang JJ, Wang CJ, Lai SY, Lin YM (1998) Radioactivity concentrations of 137Cs and 40K in basidiomycetes collected in Taiwan. Appl Radiat Isot 49(1–2):29–34

    Google Scholar 

  14. Gaso MI, Segovia N, Morton O, Lopez JL, Machuca A, Hernandez E (2007) Radioactive and stable metal bioaccumulation, crystalline compound and siderophore detection in Clavariadelphus truncatus. J Environ Radioact 97:57–69

    Google Scholar 

  15. Yoshida S, Muramatsu Y (1998) Concentrations of alkali and alkaline earth elements in mushrooms and plants collected in a Japanese pine forest, and their relationship with 137Cs. J Environ Radioact 41(2):183–205

    Article  CAS  Google Scholar 

  16. Gaso MI, Segovia N, Morton O, Cervantes ML, Godinez L, Pena P, Acosta E (2000) 137Cs and relationships with major and trace elements in edible mushrooms from Mexico. Sci Total Environ 262:73–89

    Article  CAS  Google Scholar 

  17. Ban-nai T, Muramatsu Y, Yoshida S, Uchida S, Shibata S, Ambe S, Ambe F, Suzuki A (1997) Multitracer studies on the accumulation of radionuclides in mushrooms. J Radiat Res 38(4):213–218

    Article  CAS  Google Scholar 

  18. Steiner M, Linkov I, Yoshida S (2002) The role of fungi in the transfer and cycling of radionuclides in forest ecosystems. J Environ Radioact 58:217–241

    Article  CAS  Google Scholar 

  19. Ciuffo LEC, Belli M, Pasquale A, Menegon S, Velasco HR (2002) 137Cs and 40K soil-to-plant relationship in a seminatural grassland of the Giulia Alps, Italy. Sci Total Environ 295:69–80

    Article  CAS  Google Scholar 

  20. International Atomic Energy Agency (1996) International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources. Safety Series No. 115, Vienna, Austria

  21. International Union of Radioecologists (1992) Draft working document handbook of parameter values for the predication of radionuclide transfer in temperate environments. IAEA, Vienna, Austria

    Google Scholar 

  22. International Commission on Radiological Protection (1979) Radionuclide release into the environment: Assessment of Doses to Man. Pergamon Press, Oxford, ICRP Publication 29, vol 2, pp 2–10

  23. International Atomic Energy Agency (1982) Generic models and parameters for assessing the environmental transfer of radionuclides from routine release. Safety Series No. 57. IAEA, Vienna, Austria

  24. International Atomic Energy Agency (1989) Measurement of radionuclides in food and the environment. Technical Report Series, No. 295. IAEA, Vienna, Austria

  25. International Atomic Energy Agency (1994) Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Technical Report Series, No. 364. IAEA, Vienna, Austria

  26. Vera Tome F, Blanco Rodriguez MP, Lozano JC (2003) Soil-to-plant transfer factors for natural radionuclides and stable elements in a Mediterranean area. J Environ Radioact 65:161–175

    Article  CAS  Google Scholar 

  27. Solak MH (1996) Taxonomical investigations on some mushrooms distributed in Izmir. Dokuz Eylül University, PhD Thesis, pp 47–161

  28. Solak MH, Işiloğlu M, Gücin F, Gökler I (1999) Macrofungi of Izmir Province. Turk J Bot 23:383–390

    Google Scholar 

  29. Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40(3):586–593

    Article  CAS  Google Scholar 

  30. McGee EJ, Johanson KJ, Keatinge MJ, Synnott HJ, Colgan PA (1996) An evaluation of ratio systems in radioecological studies. Health Phys 70(2):215–221

    Article  CAS  Google Scholar 

  31. McGee EJ, Synnott HJ, Johanson KJ, Fawaris BH, Nielsen SP, Horrill AD, Kennedy VH, Barbayiannis N, Veresoglou DS, Dawson DE, Colgan PA, McGarry AT (2000) Chernobyl fallout in a Swedish spruce forest ecosystem. J Environ Radioact 48:59–78

    Article  CAS  Google Scholar 

  32. Schlichting E, Blume HP, Stahr K (1995) Bodenkundliches praktikum, pareys, studientexte 81. Blackwell-Wissenschaftsverlag, Hamburg

    Google Scholar 

  33. Jackson ML (1967) Soil chemical analysis. Prentice Hall of India Private Ltd, New Delhi

    Google Scholar 

  34. Black CA (1965) Methods of soil analysis, Part III. American Society of Agronomy, Inc., Madison, p 1372

    Google Scholar 

  35. Tsukada H, Shibata H, Sugiyama H (1998) Transfer of radiocesium and stable caesium from substrata to mushrooms in a pine forest in Rokkasho-mura, Aomori. Japan. J Environ Radioact 39(2):149–160

    Article  CAS  Google Scholar 

  36. Sugiyama H, Terada H, Shibata H, Morita Y, Kato F (2000) Radiocesium concentrations in wild mushrooms and characteristics of cesium accumulation by the edible mushroom (Pleurotus ostreatus). J Health Sci 46(5):370–375

    CAS  Google Scholar 

  37. Randa Z, Kucera J (2004) Trace elements in higher fungi (mushrooms) determined by activation analysis. J Radioanal Nucl Chem 259(1):99–107

    Article  CAS  Google Scholar 

  38. Kuwahara C, Fukumoto A, Ohsone A, Furuya N, Shibata H, Sugiyama H, Kato F (2005) Accumulation of radiocesium in wild mushrooms collected from a Japanese forest and cesium uptake by microorganisms isolated from the mushroom-growing soils. Sci Total Environ 345:165–173

    Article  CAS  Google Scholar 

  39. Yoshida S, Muramatsu Y (1997) Determination of major and trace elements in mushroom, plant and soil samples collected from Japanese forests. Int J Environ Anal Chem 67:49–58

    Article  CAS  Google Scholar 

  40. Bunzl K, Albers B, Schimmack W, Belli M, Ciuffo L, Menegon S (2000) Examination of a relationship between 137Cs concentrations in soils and plants from alpine pastures. J Environ Radioact 98(2):145–158

    Article  Google Scholar 

  41. Calmon P, Thiry Y, Zibold G, Rantavaara A, Fesenko S (2009) Transfer parameter values in temperate forest ecosystems: a review. J Environ Radioact 100:757–766

    Article  CAS  Google Scholar 

  42. Rühm W, Kammerer L, Hiersche L, Wirth E (1997) The 137Cs/134Cs ratio in fungi as an indicator of the major mycelium location in forest soil. J Environ Radioact 35(2):129–148

    Article  Google Scholar 

  43. Rühm W, Yoshida S, Muramatsu Y, Steiner M, Wirth E (1999) Distribution patterns for stable 133Cs and their implications with respect to the long-term fate of radioactive 134Cs and 137Cs in a semi-natural ecosystem. J Environ Radioact 45:253–270

    Article  Google Scholar 

  44. Karadeniz Ö, Yaprak G (2008) Vertical distributions and gamma dose rates of 40K, 232Th, 238U and 137Cs in the selected forest soils in Izmir, Turkey. Radiat Prot Dosim 131(3):346–355

    Article  CAS  Google Scholar 

  45. Barnett CL, Beresford NA, Self PL, Howard BJ, Frankland JC, Fulker MJ, Dodd BA, Marriott JVR (1999) Radiocesium activity concentrations in the fruit-bodies of macrofungi in Great Britain and an assesment of dietary intake habits. Sci Total Environ 231:67–83

    Article  CAS  Google Scholar 

  46. Yoshida S, Muramatsu Y, Steiner M, Belli M, Pasquale A, Rafferty B, Rühm W, Rantavaara A, Linkov I, Dvornik A, Zhuchenko T (2000) Relationship between radiocesium and stable cesium in plants and mushrooms collected from forest ecosystems with different contamination levels. In: Proceedings of the 10th International Congress of the International Radiation Protection Association (IRPA-10), Hiroshima, Japan, P-11-244

Download references

Acknowledgments

Grateful thanks are offered to the provider of financial support for the research presented here: Ege University Scientific Research Project (Project no: 2003 NBE 006). The authors also would like to thank Dr. Halil Solak (Muğla University, Ula Technical High School, Department of Mycology) for his indispensable help during precise identification of the different fungi species, to Mr. Nejat Özden and Dr. Tolga Esetlili for their collaboration during identification of the different soil horizons, to Mr. Fatih Çoban for his help on drawing the figures and the ACME Laboratory for carrying out trace element analyses of mushroom samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Karadeniz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karadeniz, Ö., Yaprak, G. Soil-to-mushroom transfer of 137Cs, 40K, alkali–alkaline earth element and heavy metal in forest sites of Izmir, Turkey. J Radioanal Nucl Chem 288, 261–270 (2011). https://doi.org/10.1007/s10967-010-0908-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0908-7

Keywords

Navigation