Skip to main content
Log in

Lung tissue substitute: synthesis, characterization and attenuation studies for low energy photons

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Towards development of lung tissue substitute used in the calibration of lung counters, seven sets of polyurethane (PU) foam were synthesized exhibiting a density range of 0.14–0.42 g/cm3 by varying the quantity of foaming agent (water) in the formulation. Foam sets were characterized by Fourier transform infrared spectroscopy, elemental analysis and thermo gravimetric analysis. Effect of density on the properties of PU foam is investigated. In addition, attenuation behavior of synthesized material for low energy (<100 keV) gamma rays was checked by using 241Am & 133Ba sources and planar high purity germanium detector. Moreover, the linear and mass attenuation coefficients of all sets were calculated and were found to be in agreement to the reported values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Raj B, Mannan SL, Vasudeva Rao PR, Mathew MD (2007) Sadhana 27:527–558

    Article  Google Scholar 

  2. Anantharaman K, Shivakumar V, Saha D (2008) J Nucl Mater 383:119–121

    Article  CAS  Google Scholar 

  3. Rodriguez P (1999) Bull Mater Sci 22:215–220

    Article  CAS  Google Scholar 

  4. Toker C, Uzun B, Canci H, Oncu Ceylan F (2005) Radiat Phys Chem 73:365–367

    Article  CAS  Google Scholar 

  5. Foldiak G (1986) Industrial application of radioisotopes. Elsevier Science Pub Co, New York

    Google Scholar 

  6. Kowalsky RJ, Perry JR (1987) Radiopharmaceuticals in nuclear medicine practice. Appleton and Lange, Norwalk, CT (USA)

  7. Akahane K (2016) Radiat Prot Dosim 171:3–6

    Article  Google Scholar 

  8. IAEA-TECDOC-1334 (2003) Intercalibration of in vivo counting systems using an Asian phantom. http://www-pub.iaea.org/MTCD/Publications/PDF/te_1334_web.pdf

  9. Safety Standards Series No. RS-G-1.2 (1999) IAEA, Vienna. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1081_web.pdf

  10. Garg SP, Sreedevi KR, Sharma RC (1995) Bull Radiat Prot 18:100–105

    Google Scholar 

  11. Rzemek K, Czerwiński A, Dymecka M, Ośko J, Pliszczyński T, Haratym Z (2015) NUKLEONIKA 60:181

    Article  CAS  Google Scholar 

  12. Carbaugh EH, Antonio CL, Lynch TP (2015) Health Phys 109:141–147

    Article  Google Scholar 

  13. Lobaugh ML, Spitz HB, Glover SE (2015) Health Phys 108:67–75

    Article  CAS  Google Scholar 

  14. Ramsden D (1969) Health Phys 16:145–153

    Article  CAS  Google Scholar 

  15. Lucena EA, Rebelo AMO, Araújo F, Sousa WO, Dantas ALA, Dantas BM, Corbo R (2007) Radiat Prot Dosim 127:465–468

    Article  CAS  Google Scholar 

  16. Shirotani T (1988) J Nucl Sci Technol 25:875–883

    Article  CAS  Google Scholar 

  17. Griffith R (1978) Fabrication of a tissue-equivalent torso phantom for inter-calibration of in-vivo transuranic nuclide counting facilities. Paper presented at the symposium on advances in radiation protection monitoring, Stockholm, Sweden

  18. Olsen PC, Gordon NR, Simmons KL (1993) US Patent US5266035A. https://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/US5266035.pdf

  19. Kramer GH, Hauck BM (2000) Radiat Prot Dosim 88:311–317

    Article  CAS  Google Scholar 

  20. Kramer GH, Hauck BM, Allen SA (1998) Health Phys 74:594–601

    Article  CAS  Google Scholar 

  21. Kramer GH, Hauck BM, Barry M (1997) Health Phys 73:831–837

    Article  CAS  Google Scholar 

  22. Manohari M, Deepu R, Mathiyarasu R, Rajagopal V, Jose MT, Venkatraman B (2016) Radiat Prot Environ 39:96–100

    Article  Google Scholar 

  23. de Mello JQ, Lucena EA, Dantas ALA, Dantas BM (2016) J Phys Conf Ser 733:012089

    Article  Google Scholar 

  24. White DR, Martin RJ (1977) Br J Radiol 50:814–821

    Article  CAS  Google Scholar 

  25. Constantinou C (1978) Tissue substitutes for particulate radiations and their use in radiation dosimetry and radiotherapy. Ph.D. thesis, University of London

  26. Constantinou C (1982) Br J Radiol 55:217–224

    Article  CAS  Google Scholar 

  27. Traub RJ, Olsen PC, Mcdonald JC (2006) Radiat Prot Dosim 121:202–207

    Article  CAS  Google Scholar 

  28. Bethesda MD (1989) Tissue substitutes in radiation dosimetry and measurement. ICRU Report 44

  29. Bethesda MD (1992) Photon, electron, proton and neutron interaction data for body tissues. ICRU Report 46

  30. Valentin J (2002) Ann ICRP 32:1–277

    Article  Google Scholar 

  31. White DR, Constantinou C, Martin RJ (1986) Br J Radiol 59:787–790

    Article  CAS  Google Scholar 

  32. Griffith RV (1982) Polyurethane as a base for a family of tissue equivalent materials. Proceedings of the 5th international congress of the international radiation protection association. Jerusalem, Israel, 165-168

  33. Kaushiva BD (1999) Structure Property Relationships of Flexible polyurethane foams. PhD Thesis University of Virginia Polytechnic Institute and State University

  34. Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP (2008) J Appl Polym Sci 108:1810–1817

    Article  CAS  Google Scholar 

  35. Soto GD, Marcovich NE, Mosiewicki MA (2016) J Appl Polym Sci 35:43831

    Google Scholar 

  36. Healy TT (1964) Polyurethane foams, proceedings of the symposium on polyurethane. Foam, London

    Google Scholar 

  37. Pinto ML (2010) J Chem Educ 87:212–215

    Article  CAS  Google Scholar 

  38. Wong CS, Badri KH (2012) Mater Sci Appl 3:78–86

    CAS  Google Scholar 

  39. Kwon OJ, Yang SR, Kim DH, Park JS (2007) J Appl Polym Sci 103:1544–1553

    Article  CAS  Google Scholar 

  40. Sergei VL, Edward DW (2004) Polym Int 53:1901–1929

    Article  Google Scholar 

  41. Ravey M, Pearce EM (1997) J Appl Polym Sci 63:47–74

    Article  CAS  Google Scholar 

  42. Szycher M (1999) Handbook of polyurethanes. CRC Press New, York

    Google Scholar 

  43. Hosseini SH, Noushin Ezzati S, Askari M (2014) Polym Adv Technol 26:561–568

    Article  Google Scholar 

  44. Nambiar S, Yeow JTW (2012) ACS Appl Mater Interfaces 4:5717–5726

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Arup Dasgupta & Mr. K G Raghavendra, Structural & Analytical Microscopy Section, Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam & UGC-DAE-CSR, Kalpakkam for SEM analysis. The authors are thankful to Mr. H. Krishnan, Mr. B. N. Mohanty, Mr. Ajay Rawat & Ms. Ramani Yuvraj, from Radiological Safety Division, IGCAR for their help during experiments and technical discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, S., Brahmaji Rao, J.S., Sivasubramanian, K. et al. Lung tissue substitute: synthesis, characterization and attenuation studies for low energy photons. J Polym Res 24, 78 (2017). https://doi.org/10.1007/s10965-017-1236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1236-1

Keywords

Navigation