Skip to main content
Log in

Crystallization induced enhancement on electrical conductivity and strength of highly conductive PP composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A highly conductive and reinforced polypropylene/nickel coated glass fiber (PP/NCGF) composite is fabricated via a simple and efficient strategy. Nucleating agent induced crystallization leads to the sharp volume excluded effect and drives NCGFs into the amorphous region of PP matrix, thus the formation of conductive network connected by NCGFs is promoted remarkably. The incorporation of nucleating agent dibenzylidene sorbitol (DBS) improves the strength of composites simultaneously due to the enhanced crystallinity and the reinforced interfacial interaction. Accordingly, the percolation threshold of PP/NCGF composites is decreased to 0.35 vol% (Ni content) by loading DBS, and the conductivity increases by four order of magnitude around the percolation threshold which exceeds 70 S/m with the Ni content of only 0.47 vol%. The tensile strength of PP/NCGF composites is increased by about 30–40 % in all range of NCGF content. This exciting result provides a strategy to prepare high-performance conductive composites by crystallization-induced enhancement.

Nucleating agent induced crystallization leads to the sharp volume excluded effect and drives Ni coated glass fibers into the amorphous region of PP matrix, thus the formation of conductive network is promoted remarkably. The incorporation of nucleating agent improves the strength of composites simultaneously due to the enhanced crystallinity and the reinforced interfacial interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gao C, Zhang SM, Wang F, Wen B, Han CC, Ding YF, et al. (2014) Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties. ACS Appl Mater Interfac 6:12252–12260

    Article  CAS  Google Scholar 

  2. Song WL, Cao MS, MM L, Bi S, Wang CY, Liu J, Yuan J, Fan LZ (2014) Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66:67–76

    Article  CAS  Google Scholar 

  3. Wang DW, Li F, Zhao JP, Ren WC, Chen ZG, Tan J, ZH W, Gentle L, GQ L, Cheng HM (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752

    Article  CAS  Google Scholar 

  4. Jiang HJ, Moon KS, Li Y, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18:2969–2973

    Article  CAS  Google Scholar 

  5. Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746

    Article  CAS  Google Scholar 

  6. Ameli A, Jung PU, Park CB (2013) Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 60:379–391

    Article  CAS  Google Scholar 

  7. Zhang SM, Deng H, Zhang Q, Fu Q (2014) Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. ACS Appl Mater Interfac 6:6835–6844

    Article  CAS  Google Scholar 

  8. Yan DX, Pang H, Li B, Vajtai R, Xu L, Ren PG, et al. (2015) Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv Funct Mater 25:559–566

    Article  CAS  Google Scholar 

  9. Dai D, YY Q, Li Y, Zheng GQ, Liu CT, Chen JB, Shen CY (2014) Electrically conductive CB/PA6/HDPE composite with a CB particles coated electrospun PA6 fibrous network. Mater Lett 114:96–99

    Article  CAS  Google Scholar 

  10. Wu H, Rook B, Drzal LT (2013) Dispersion optimization of exfoliated graphene nanoplatelet in polyetherimide nanocomposites: extrusion, precoating, and solid state ball milling. Polym Compos 34:426–432

    Article  Google Scholar 

  11. Huang JR, Mao C, Zhu YT, Jiang W, Yang XD (2014) Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon 73:267–274

    Article  CAS  Google Scholar 

  12. Capozzi CJ, Gerhardt RA (2007) Novel percolation mechanism in PMMA matrix composites containing segregated ITO nanowire networks. Adv Funct Mater 17:2515–2521

    Article  CAS  Google Scholar 

  13. Ren PG, Di YY, Zhang Q, Li L, Pang H, Li ZM (2012) Composites of ultrahigh-molecular-weight polyethylene with graphene sheets and/or MWCNTs with segregated network structure: preparation and properties. Macromol Mater Eng 297:437–443

    Article  CAS  Google Scholar 

  14. Du JH, Zhao L, Zeng Y, Zhang LL, Li F, Liu PF, et al. (2011) Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49:1094–1100

    Article  CAS  Google Scholar 

  15. Kim BJ, Bae KM, Lee YS, An KH, Park SJ (2014) EMI shielding behaviors of Ni-coated MWCNTs-filled epoxy matrix nanocomposites. Surf Coat Tech 242:125–131

    Article  CAS  Google Scholar 

  16. Oh Y, Suh D, Kim Y, Lee E, Mok JS, Choi J, Baik S (2008) Silver-plated carbon nanotubes for silver/conducting polymer composites. Nanotechnology 19:495602

    Article  Google Scholar 

  17. Jang J, Ryu SK (2006) Physical property and electrical conductivity of electroless Ag-plated carbon fiber-reinforced paper. J Mater Process Tech 180:66–73

    Article  CAS  Google Scholar 

  18. Wang R, Yang H, Wang JL, Li FX (2014) The electromagnetic interference shielding of silicone rubber filled with nickel coated carbon fiber. Polym Test 38:53–56

    Article  CAS  Google Scholar 

  19. Tzeng SS, Chang FY (2001) EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites. Mater Sci Eng A 302:258–267

    Article  Google Scholar 

  20. Lim SJ, Lee JG, Hur SH, Kim WN (2014) Effects of MWCNT and nickel-coated carbon fiber on the electrical and morphological properties of polypropylene and polyamide 6 blends. Macromol Res 22:632–638

    Article  CAS  Google Scholar 

  21. Deng H, Lin L, Ji MZ, Zhang SM, Yang MB, Fu Q (2014) Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog Polym Sci 39:627–655

    Article  CAS  Google Scholar 

  22. Guo C, Duan HJ, Dong CY, Zhao GZ, Liu YQ, Yang YQ (2015) Preparation of the polypropylene/nickel coated glass fibers conductive composites with a low percolation threshold. Mater Lett 143:124–127

    Article  CAS  Google Scholar 

  23. Ding XJ, Wang JW, Zhang S, Wang J, Li SQ (2015) Composites based on CB/CF/Ag filled EPDM/NBR rubber blends with high conductivity. J Appl Polym Sci 132:41357

    Google Scholar 

  24. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670

    Article  CAS  Google Scholar 

  25. Chen GH, DJ W, Weng WG, Yan WL (2001) Dispersion of graphite nanosheets in a polymer matrix and the conducting property of the nanocomposites. Polym Eng Sci 41:2148–2154

    Article  CAS  Google Scholar 

  26. Deng H, Skipa T, Bilotti E, Zhang R, Lellinger D, Mezzo L, Fu Q, Alig I, Peijs T (2010) Preparation of high-performance conductive polymer fibers through morphological control of networks formed by nanofillers. Adv Funct Mater 20:1424–1432

    Article  CAS  Google Scholar 

  27. Deng H, Bilotti E, Zhang R, Loos J, Peijs T (2010) Effect of thermal annealing on the electrical conductivity of high-strength bicomponent polymer tapes containing carbon nanofillers. Synthetic Met 160:337–344

    Article  CAS  Google Scholar 

  28. Hopkins AR, Reynolds JR (2000) Crystallization driven formation of conducting polymer networks in polymer blends. Macromolecules 33:5221–5226

    Article  CAS  Google Scholar 

  29. Narkis M, Vaxman A (1984) Resistivity behavior of filled electrically conductive crosslinked polyethylene. J Appl Polym Sci 29:1639–1652

    Article  CAS  Google Scholar 

  30. Song YH, Zheng Q (2007) Influence of annealing on conduction of high-density polyethylene/carbon black composite. J Appl Polym Sci 105:710–717

    Article  CAS  Google Scholar 

  31. Cheng SZD, Janimak JJ, Zhang A, Cheng HN (1990) Regime transsitions in fractions of isotactic polypropylene. Macromolecules 23:298–303

    Article  CAS  Google Scholar 

  32. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588

    Article  Google Scholar 

  33. Pham VH, Dang TT, Hur SH, Kim EJ, Chung JS (2012) Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Appl Mater Interfac 4:2630–2636

    Article  CAS  Google Scholar 

  34. Tang JG, Wang Y, Liu HY, Belfiore LA (2004) Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polymer 45:2081–2091

    Article  CAS  Google Scholar 

  35. Zhang RC, Lu A, Xu Y, Min M, Xia JQ, Zhou JH, et al. (2009) Equilibrium melting temperature and spherulitic growth rate of poly(phenylene sulfide. Eur Polym J 45:2867–2872

    Article  CAS  Google Scholar 

  36. Zhang MQ, JR X, Zhang ZY, Zeng HM, Xiong XD (1996) Effect of transcrystallinity on tensile behaviour of disscontinuous carbon fiber reinforced semicrystalline thermoplastic composites. Polymer 37:5151–5158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this work by Natural Science Foundation of Shanxi Province (No. 2014021018-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaqi Yang or Yaqing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Hou, T., Dong, C. et al. Crystallization induced enhancement on electrical conductivity and strength of highly conductive PP composites. J Polym Res 23, 165 (2016). https://doi.org/10.1007/s10965-016-1065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1065-7

Keywords

Navigation