Skip to main content
Log in

Development of novel chitosan-poly(N,N-diethylacrylamide) IPN films for potential wound dressing and biomedical applications

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Novel interactive and thermoresponsive interpenetrating polymer network (IPN) films, which are transparent, permeable to oxygen, and have the potential to be easily stripped from a wound bed, were synthesised using rapid photopolymerisation and crosslinking of DEAAm in the presence of chitosan. This study provides the first evaluation and optimisation of a UV-polymerised chitosan–PDEAAm IPN composite film for application in wound dressings. FTIR spectroscopy and DSC analysis were used to initially characterise the resulting films. Modulated differential scanning calorimetry results showed that the dressings exhibited lower critical solution temperatures in the desired range, while the samples were also observed to undergo temperature-dependent swelling behaviour. This thermosensitive property would potentially allow the dressings to be easily detachable, which would enable frequent dressing changes if desired without causing further injury to healing tissues. Furthermore, the water content values recorded are in the typical and desired ranges for commercial wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murakami K, Aoki H, Nakamura S, Nakamura S-I, Takikawa M, Hanzawa M, Kishimoto S et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90

    Article  CAS  Google Scholar 

  2. Sung JH, Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS, Han SS, Ku SK, Yong CS, Choi HG (2010) Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm 392:232–240

    Google Scholar 

  3. Hollinworth H, Collier M (2000) Nurses’ views about pain and trauma at dressing changes: results of a national survey. J Wound Care 9(8):369–373

    CAS  Google Scholar 

  4. Lin S-Y, Chen K-S, Chu L-R (2001) Design and evaluation of drug-loaded wound dressing having thermoresponsive, adhesive, absorptive and easy peeling properties. Biomaterials 22:2999–3004

    Article  CAS  Google Scholar 

  5. Chen K-S, Ku Y-A, Lee C-H, Lin H-R, Lin F-H, Chen T-M (2005) Immobilisation of chitosan gel with cross-linking reagent on PNIPAAm gel/PP nonwoven composites surface. Mater Sci Eng C 25:472–478

    Google Scholar 

  6. Yang JM, Yang SJ, Lin HT, Wu T-H, Chen H-J (2008) Chitosan containing PU/Poly(NIPAAm) thermosensitive membrane for wound dressing. Mater Sci Eng C 28:150–156

    Google Scholar 

  7. Radhakumary C, Antonty M, Sreenivasan K (2011) Drug loaded thermoresponsive and cyto-compatible chitosan based hydrogel as a potential wound dressing. Carbohydr Polym 83:705–713

    Article  CAS  Google Scholar 

  8. Chen J-P, Kuo C-Y, Lee W-L (2012) Thermoresponsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics. Appl Surf Sci. doi:10.1016/j.apsusc.2012.02.106

  9. Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18(4):739–744

    Google Scholar 

  10. Mourya VK, Inamdar NN (2008) Chitosan modifications and applications: opportunities galore. React Funct Polym 68:1013–1051

    Google Scholar 

  11. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182

    Article  CAS  Google Scholar 

  12. Jayakumar R, Prabaharan M, Kumar PT, Sudheesh NSV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337. doi:10.1016/j.biotechadv.2011.01.005

    Google Scholar 

  13. Shi CM, Zhu Y, Ran XZ, Wang M, Su Y, Cheng TM (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133:185–192

    Article  CAS  Google Scholar 

  14. Ngadaonye JI, Geever LM, Cloonan MO, Higginbotham CL (2012) Photopolymerised thermo-responsive poly(N,N-diethylacrylamide)-based copolymer hydrogels for potential drug delivery applications. J Polym Res 19:9822

    Google Scholar 

  15. Okano T, Bae YH, Jacobs H, Kim SW (1990) Thermally on-off switching polymers for drug permeation and release. J Controlled Release 11:255–265

    Google Scholar 

  16. Okuyama Y, Yoshida R, Sakai K, Okano T, Sakurai Y (1993) Swelling controlled zero order and sigmoidal drug release from thermo-responsive poly(N-isopropylacrylamide-co-butyl methacrylate) hydrogel. J Biomater Sci Polym Ed 4:545–556

    Google Scholar 

  17. Kim SJ, Lee CK, Lee YM, Kim SI (2003) Preparation and characterisation of thermosensitive poly(N-isopropylacrylamide)/poly(ethylene oxide) semi-interpenetrating networks. J Appl Polym Sci 90:3032–3036

    Article  CAS  Google Scholar 

  18. Zhang JT, Huang SW, Liu J, Zhuo RX (2004) Temperature sensitive poly(N-isopropyl acrylamide)/poly(N-isopropylacrylamide) interpenetrating polymer networks for drug delivery. J Polym Sci Polym Chem 42:1249–1254

    Google Scholar 

  19. Deshpande DS, Bajpai R, Bajpai AK (2012) Synthesis and characterization of polyvinyl alcohol based semi interpenetrating polymeric networks. J Polym Res 19:9938

    Google Scholar 

  20. Yun J, Im JS, Kim HI, Lee YS (2012) Effect of oxyfluorination of PVA/PNIPAAm hydrogel on temperature responsive drug release. J Polym Res 19:9887

    Google Scholar 

  21. Yang JM, Lin HT (2004) Properties of chitosan containing PP-g-AA-g-NIPAAm bigraft nonwoven fabric for wound dressing. J Membr Sci 243:1–7

    Google Scholar 

  22. Panayiotou M, Pöhner C, Vandevyver C, Wandrey C, Hilbrig F, Freitag R (2007) Synthesis and characterisation of thermoresponsive poly(N,N-diethylacrylamide) microgels. React Funct Polym 67:807–819

    Article  CAS  Google Scholar 

  23. Akturk O, Tezcaner A, Bilgili H, Deveci MS, Gecit MR, Keskin D (2011) Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J Biosci Bioeng 112:279–288

    Article  CAS  Google Scholar 

  24. Sakchai W, Chureerat P, Srisagul S (2006) Development and in vitro evaluation of chitosan- eudragit RS 300 composite wound dressings. AAPS Pharm Sci Tech 7:E1–E6

    Google Scholar 

  25. Ganji F, Abdekhodaie MJ (2010) Chitosan-g-PLGA copolymer as a thermosensitive membrane. Carbohydr Polym 80:740–746

    Google Scholar 

  26. Yang C, Xu L, Zhou Y, Zang X, Huang X, Wang M, Han Y, Zhai M, We S, Li J (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydrate Polym 82:1297–1305

    Article  CAS  Google Scholar 

  27. Abugoch LE, Tapia C, Villamán MC, Yazdani-Pedram M, Díaz-Dosque M (2011) Characterisation of quinoa protein–chitosan blend edible film. Food Hydrocolloids 25:879–886

    Google Scholar 

  28. Brugnerotto J, Lizardi J, Goycoolea FM, Arguelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterisation. Polymer 42(8):3569–3580

    Article  CAS  Google Scholar 

  29. Prashanth KVH, Kittur FS, Tharanathan RN (2002) Solid state structure of chitosan prepared under different N-deacetylating conditions. Carbohydrate Polym 50(1):27–33

    Article  Google Scholar 

  30. Brandenburg K, Seydel U (1996) Fourier transform infrared spectroscopy of cell surface polysaccharides. Wiley–Liss, New York

  31. Lima CGA, de Oliveira RS, Figueiro SD, Wehmann CF, Goes JC, Sombra ASB (2006) DC conductivity and dielectric permittivity of collagen–chitosan films. Mater Chem Phys 99:284–288

    Google Scholar 

  32. Chen J, Liu M, Liu H, Ma L (2009) Synthesis, swelling and drug release behaviour of poly(N,N-diethylacrylamide-co-N-hydroxymethyl acrylamide) hydrogel. Mater Sci Eng C 29:2116–2123

    Google Scholar 

  33. Cerqueira M, Souza B, Teixeira J, Vicente A (2011) Effect of glycerol and corn oil on physico-chemical properties of polysaccharide films—a comparative study. Food Hydrocoll 27:175–184

    Google Scholar 

  34. Brown CD, Kreilgaard L, Nakakura M, Caram-Lelham N, Pettitb DK, Gombotzb WR et al (2001) Release of PEGylated granulocyte–macrophage colony stimulating factor from chitosan/glycerol films. J Controlled Release 72:35–46

    Google Scholar 

  35. Lavorgna M, Piscitelli F, Mangiacapra P, Buonocore GG (2010) Study of the combined effect of both clay and glycerol plasticiser on the properties of chitosan films. Carbohydr Polym 82:291–298

    Article  CAS  Google Scholar 

  36. Mucha M, Pawlak A (2005) Thermal analysis of chitosan and its blends. Thermochima Acta 427:69–76

    Article  CAS  Google Scholar 

  37. Lazaridou A, Biliaderis CG (2002) Thermophysical properties of chitosan, chitosan–starch and chitosan–pellulan films near the glass transition. Carbohydr Polym 48:179–190

    Google Scholar 

  38. Hasegawa M, Isogai F, Onabe F, Usuda M, Atalla RH (1992) Characterisation of cellulose–chitosan blend films. J Appl Polym Sci 45:1873–1879

    Google Scholar 

  39. Czihak C, Muller M, Schober H, Heux L, Vogl G (1999) Dynamics of water adsorbed to cellulose. Physica B 266:87–91

    Article  CAS  Google Scholar 

  40. Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41:7051–7056

    Article  CAS  Google Scholar 

  41. Silva CL, Pereira JC, Ramalho A, Pais ACC, Sousa JJS (2008) Films based on chitosan polyelectrolyte complexes for skin delivery: Development and characterisation. J Membr Sci 320:268–279

    Article  CAS  Google Scholar 

  42. Shanta K, Harding DRK (2002) Synthesis and characterisation of chemically modified chitosan microspheres. Carbohydr Polym 48:247–253

    Article  Google Scholar 

  43. Dong Y, Ruan Y, Wang H, Zhao Y, Bi D (2004) Studies on glass transition temperature of chitosan with four techniques. J Appl Polym Sci 93:1553–1558

    Article  CAS  Google Scholar 

  44. Suyatma NE, Tighzert L, Copinet A, Coma V (2005) Effects of hydrophilic plasticisers on mechanical, thermal, and surface properties of chitosan films. J Agric Food Chem 53:3950–3957

    Article  CAS  Google Scholar 

  45. Diab T, Biliaderis CG, Gerasopoulos D, Sfakiotakis E (2001) Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. J Sci Food Agric 81:988–1000

    Article  CAS  Google Scholar 

  46. Olivas GI, Barbosa-Cánovas GV (2008) Alginate–calcium films: water vapour permeability and mechanical properties as affected by plasticiser and relative humidity. LWT—Food Sci Technol 41:359–366

    Google Scholar 

  47. Silva MESR, Dutra ER, Mano V, Machado JC (2000) Polym Degrad Stab 67:491–495

    Article  Google Scholar 

  48. Idziak I, Avoce D, Lessard D, Gravel D, Zhu XX (1999) Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide). Macromolecules 32:1260–1263

    Google Scholar 

  49. Liu H, Liu M, Ma L, Chen J (2009) Thermo- and pH-sensitive comb-type grafted poly(N,N-diethylacrylamide-co-acrylic acid) hydrogels with rapid response behaviours. Eur Polym J 45:2060–2067

    Google Scholar 

  50. Witthayaprapakorn C (2011) Design and preparation of synthetic hydrogels via photo-polymerisation for biomedical use as wound dressings. Procedia Eng 8:286–291

    Google Scholar 

  51. Kichofen B, Wokalek H, Scheel D, Ruh H (1986) Chemical and physical properties of a hydrogel wound dressing. Biomaterials 7:67–72

    Article  Google Scholar 

  52. Winkler LW (1888) Die Bestimmung des in Wasser gelösten Sauerstoffen. Be Dtsch Chem Ges 21:2843–2855

    Article  Google Scholar 

  53. Strickland JDH, Parsons TR (1968) Determination of dissolved oxygen. A practical handbook of seawater analysis. Bull Fisheries Res Board Canada 167:71–75

    Google Scholar 

  54. Wittaya-areekul S, Prahsarn C (2006) Development and in vitro evaluation of chitosan polysaccharides composite wound dressings. Int J Pharm 313:123–128

    Article  CAS  Google Scholar 

  55. Silver IA (1972) Oxygen tension and epithelialisation. In: Maibach HI, Rovee DT (eds) Epidermal wound healing. Year Book Medical, Chicago, p 291

  56. Winter GD (1972) Epidermal regeneration studied in the domestic pig. In: Maibach HI, Rovee DT (eds) Epidermal wound healing. Year Book Medical, Chicago, p 71

  57. Pandit AS, Faldman DS (1994) Effect of oxygen treatment and dressing oxygen permeability on wound healing. Wound Repair Regen 2(2):130–137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from both the Irish Department of Education (Core Research Strengths Enhancement—Technological Sector Research: Strand III) and the Athlone Institute of Technology research and development fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement L. Higginbotham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngadaonye, J.I., Geever, L.M., Killion, J. et al. Development of novel chitosan-poly(N,N-diethylacrylamide) IPN films for potential wound dressing and biomedical applications. J Polym Res 20, 161 (2013). https://doi.org/10.1007/s10965-013-0161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0161-1

Keywords

Navigation