Skip to main content
Log in

Preparation of mid-to-high molecular weight konjac glucomannan (MHKGM) using controllable enzyme-catalyzed degradation and investigation of MHKGM properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Mid-to-high molecular weight konjac glucomannan (MHKGM) powders with different molecular weights were prepared and purified from their enzymatic hydrolysis solutions. MHKGM powder yield was optimized with respect to substrate concentration, urea concentration, the number of alcohol washings, and drying temperature. Properties of MHKGM powder were characterized by SEC, FTIR, UV, XRD, rheological, and thermal analysis techniques. The results showed that under the correct conditions a high productive yield of MHKGM can be obtained. MHKGMs have the same chemical structure as that of native KGM, but their weight average molecular weight (M w), molecular weight distribution index (M w/M n), radius of gyration (R g), solution optical clarity, rheological properties, and other physical properties such as water solubility are very different from those of native KGM. This study provides useful a reference for making MHKGM powder with varying molecular weight and the potential applications of KGM such as healthy food additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kobayashi S, Tsujihata S, Hibi N, Tsukamoto Y (2002) Preparation and rheological characterization of carboxymethyl konjac glucomannan. Food Hydrocoll 16(4):289–294

    Article  CAS  Google Scholar 

  2. Maeda M, Shimahara H, Sugiyama N (1980) Detailed examination of the branched structure of konjac glucomannan. Agric Biol Chem 38:315–321

    Google Scholar 

  3. Cescutti P, Campa C, Delben F, Rizzo R (2002) Structure of the oligomers obtained by enzymatic hydrolysis of the glucomannan produced by the plant Amorphophallus konjac. Carbohydr Res 337(24):2505–2511

    Article  CAS  Google Scholar 

  4. Imeson A (1997) Thickening and gelling agent for food. Blackie Academic & Professional, London

    Google Scholar 

  5. Alonso-Sande M, Teijeiro-Osorio D, Remuñán-López C, Alonso MJ (2009) Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm 72(2):453–462

    Article  CAS  Google Scholar 

  6. Lu Y, Zhang L, Xiao P (2004) Structure, properties and biodegradability of water resistant regenerated cellulose films coated with polyurethane/benzyl konjac glucomannan semi-IPN coating. Polym Degrad Stab 86(1):51–57

    Article  CAS  Google Scholar 

  7. Zhang Y, Xie B, Gan X (2005) Advance in the applications of konjac glucomannan and its derivatives. Carbohydr Polym 60(1):27–31

    Article  CAS  Google Scholar 

  8. Iglesias-Otero MA, Borderías J, Tovar CA (2010) Use of konjac glucomannan as additive to reinforce the gels from low-quality squid surimi. J Food Eng 101(3):281–288

    Article  CAS  Google Scholar 

  9. Jacon SA, Rao MA, Cooley HJ, Walter RH (1993) The isolation and characterization of a water extract of konjac flour gum. Carbohydr Polym 20(1):35–41

    Article  CAS  Google Scholar 

  10. Kohyama K, Iida H, Nishinari K (1993) A mixed system composed of different molecular weights konjac glucomannan and kappa carrageenan: large deformation and dynamic viscoelastic study. Food Hydrocoll 7(3):213–226

    Article  CAS  Google Scholar 

  11. Shen C, Li W, Zhang L, Wan C, Gao S (2012) Synthesis of cyanoethyl konjac glucomannan and its liquid crystalline behavior in an ionic liquid. J Polym Res 19(2):1–8

    Google Scholar 

  12. Nishinari K (2000) Konjac glucomannan. In: Doxastakis G, Kiosseoglou V (eds) Developments in food science, vol 41. Elsevier, Amsterdam, pp 309–330

  13. Chandrasekaran R, Janaswamy S, Morris VJ (2003) Acetan:glucomannan interactions–a molecular modeling study. Carbohydr Res 338(24):2889–2898

    Article  CAS  Google Scholar 

  14. Hsu SY, Chung HY (2000) Interactions of konjac, agar, curdlan gum, [kappa]-carrageenan and reheating treatment in emulsified meatballs. J Food Eng 44(4):199–204

    Article  Google Scholar 

  15. Tao X, Yang H, Yu Y, Fu W (2006) Studies on the technology of limited hydrolysis of konjac glucomannan by β-glucanase. Sci Technol Food Ind 27(10)

  16. Dubois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  17. Albrecht M, Witt K, Fröhlich R, Kataeva O (2002) Inter- and intramolecular hydrogen bonding in amide- and urea-substituted 8-hydroxyquinoline derivatives. Tetrahedron 58(3):561–567

    Article  CAS  Google Scholar 

  18. Cho J, Heuzey M-C, Bégin A, Carreau PJ (2006) Effect of urea on solution behavior and heat-induced gelationof chitosan-[beta]-glycerophosphate. Carbohydr Polym 63(4):507–518

    Article  CAS  Google Scholar 

  19. Li B, Xie B, Kennedy JF (2006) RETRACTED: Studies on the molecular chain morphology of konjac glucomannan. Carbohydr Polym 64(4):510–515

    Article  CAS  Google Scholar 

  20. Raquez JM, Deléglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35(4):487–509

    Article  CAS  Google Scholar 

  21. Lau BK, Wang Q, Sun W, Li L (2004) Micellization to gelation of a triblock copolymer in water: thermoreversibility and scaling. J Polym Sci B Polym Phys 42(10):2014–2025

    Article  CAS  Google Scholar 

  22. Abate L, Blanco I, Cicala G, La Spina R, Restuccia CL (2006) Thermal and rheological behaviour of some random aromatic polyethersulfone/polyetherethersulfone copolymers. Polym Degrad Stab 91(4):924–930

    Article  CAS  Google Scholar 

  23. Yoshimura M, Nishinari K (1999) Dynamic viscoelastic study on the gelation of konjac glucomannan with different molecular weights. Food Hydrocoll 13(3):227–233

    Article  CAS  Google Scholar 

  24. Lin X, Wu Q, Luo X, Liu F, Luo X, He P (2010) Effect of degree of acetylation on thermoplastic and melt rheological properties of acetylated konjac glucomannan. Carbohydr Polym 82(1):167–172

    Article  CAS  Google Scholar 

  25. Liu X, Zhang C, Xu W, Ouyang C (2009) Controlled release of heparin from blended polyurethane and silk fibroin film. Mater Lett 63(2):263–265

    Article  CAS  Google Scholar 

  26. Xu Z, Sun Y, Yang Y, Ding J, Pang J (2007) Effect of [gamma]-irradiation on some physiochemical properties of konjac glucomannan. Carbohydr Polym 70(4):444–450

    Article  CAS  Google Scholar 

  27. Chen Z, Zong M, Li G (2006) Lipase-catalyzed acylation of konjac glucomannan in organic media. Process Biochem 41(7):1514–1520

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period (No. 2007BAE42B04). Experiments were conducted Engineering Research Center of Biomass Materials, Ministry of Education (Southwest University of Science and Technology, Mianyang, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuegang Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, X., Yao, X., Zhang, C. et al. Preparation of mid-to-high molecular weight konjac glucomannan (MHKGM) using controllable enzyme-catalyzed degradation and investigation of MHKGM properties. J Polym Res 19, 9849 (2012). https://doi.org/10.1007/s10965-012-9849-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9849-x

Keywords

Navigation