Skip to main content
Log in

A Note on Asymptotic Normality of Kernel Estimation for Linear Random Fields on Z 2

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This note considers the kernel estimation of a linear random field on Z 2. Instead of imposing certain mixing conditions on the random fields, it is assumed that the weights of the innovations satisfy a summability property. By building a martingale decomposition based on a suitable filtration, asymptotic normality is proven for the kernel estimator of the marginal density of the random field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradley, R.C.: Basic properties of strong mixing conditions. In: Eberlein, E., Taqqu, M.S. (eds.) Dependence in Probability and Statistics, pp. 162–192. Birkhäuser, Boston (1986)

    Google Scholar 

  2. Cheng, T.L., Ho, H.C.: Asymptotic normality for non-linear functionals of non-causal linear processes with summable weights. J. Theor. Probab. 18, 345–358 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cheng, T.L., Ho, H.C.: Central limit theorems for instantaneous filters of linear random fields on Z 2. In: Hsiung, A.C., Ying, Z., Zhang, C.H. (eds.) Random Walks, Sequential Analysis and Related Topics—A Festschrift in Honor of Y.S. Chow, pp. 71–84. World Scientific, Singapore (2007)

    Google Scholar 

  4. Doukhan, P.: Mixing: Properties and Examples. Lecture Notes in Statistics, vol. 85. Springer, Berlin (1994)

    MATH  Google Scholar 

  5. Doukhan, P., Lang, G., Surgailis, D.: Asymptotics of weighted empirical processes of linear fields with long-range dependence. Ann. Inst. H. Poincaré 38, 879–896 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Giraitis, L., Surgailis, D.: Central limit theorem for the empirical process of a linear sequence with long memory. J. Stat. Plan. Infer. 80, 81–93 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guyon, X.: Estimation d’un champ par pseudo-varisenmblable conditionelle: etude asymptotique et application au cas Markovien. In: Proc. 6th Franco-Belgian Meeting of Statisticians (1987)

  8. Guyon, X.: Random Fields on a Network. Springer, Berlin (1995)

    MATH  Google Scholar 

  9. Ho, H.-C.: On central and noncentral limit theorems in density estimation for sequences of long-range dependence. Stoch. Process. Appl. 63, 153–174 (1996)

    Article  MATH  Google Scholar 

  10. Ho, H.-C., Hsing, T.: On the asymptotic expansion of the empirical process of long-memory moving averages. Ann. Stat. 24, 992–1024 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ho, H.-C., Hsing, T.: Limit theorems for functional of moving averages. Ann. Probab. 25, 1636–1669 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Parzen, E.: On the estimation of a probability density and the mode. Ann. Math. Stat. 33, 1965–1976 (1962)

    Article  MathSciNet  Google Scholar 

  13. Pham, T.D., Tran, T.T.: Some mixing properties of time series models. Stoch. Process. Appl. 19, 297–303 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Robinson, P.M.: Nonparametric estimators for time series. J. Time Ser. Anal. 4, 185–207 (1983)

    MATH  MathSciNet  Google Scholar 

  15. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956)

    Article  MathSciNet  Google Scholar 

  16. Rosenblatt, M.: Central limit theorem for stationary processes. In: Proc. Sixth Berkeley Symp., vol. 2 pp. 551–561 (1972)

  17. Rosenblatt, M.: Stationary Sequences and Random Fields. Birkhauser, Boston (1985)

    MATH  Google Scholar 

  18. Tran, L.T.: Kernel density estimation on random fields. J. Multivar. Anal. 34, 37–53 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tran, L.T., Yakowitz, S.: Nearest neighbor estimators for random fields. J. Multivar. Anal. 44, 23–46 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Withers, C.S.: Conditions for linear processes to be strong mixing. Z. Wahrscheinlichkeitstheor. Verw. Geb. 57, 477–480 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wu, W.B., Mielniczuk, J.: Kernel density estimation for linear processes. Ann. Stat. 30, 1441–1459 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Lin Cheng.

Additional information

T.-L. Cheng’s research is supported in part by NSC 94-2118-M-018-001, Taiwan. Also, he is indebted to Department of Mathematics and Statistics, University of Calgary, for their hospitality during his visit. X. Lu’s research is supported in part by NSERC Discovery Grant of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, TL., Ho, HC. & Lu, X. A Note on Asymptotic Normality of Kernel Estimation for Linear Random Fields on Z 2 . J Theor Probab 21, 267–286 (2008). https://doi.org/10.1007/s10959-008-0146-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-008-0146-x

Keywords

Mathematics Subject Classification (2000)

Navigation