Skip to main content
Log in

A Set-indexed Fractional Brownian Motion

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

We define and prove the existence of a fractional Brownian motion indexed by a collection of closed subsets of a measure space. This process is a generalization of the set-indexed Brownian motion, when the condition of independance is relaxed. Relations with the Lévy fractional Brownian motion and with the fractional Brownian sheet are studied. We prove stationarity of the increments and a property of self-similarity with respect to the action of solid motions. Moreover, we show that there no “really nice” set indexed fractional Brownian motion other than set-indexed Brownian motion. Finally, behavior of the set-indexed fractional Brownian motion along increasing paths is analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, R. J. (1990). An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, IMS Lect. Notes, Monograph Series, vol 12, Hayward, California.

  2. Adler R.J. (2004). Gaussian random fields on manifolds, Stoch. Analysis, Random Fields and Appl., 4, 3–20

    Google Scholar 

  3. Alos E. Mazet O., Nualart D. (2001). Stochastic calculus with respect to Gaussian processes. Annals of Prob. 29, 766–801

    Article  Google Scholar 

  4. Benassi A., Jaffard S., Roux D. (1998). Elliptic Gaussian random processes. Rev. Mat. Ibe. 13, 19–89

    MathSciNet  Google Scholar 

  5. Dudley R.M. (1973). Sample functions of the Gaussian process. Annals of Prob. 1(1): 66–103

    MathSciNet  Google Scholar 

  6. Goldie C.M., Greenwood P.E. (1986). Characterizations of set-indexed Brownian motion and associated conditions forfinite-dimensional convergence. Annals of Prob. 14, 802–816

    MathSciNet  Google Scholar 

  7. Herbin, E. (2006). From N-parameter fractional Brownian motions to N-parameter multifractional Brownian motions, to appear in Rocky Mountains. J. Math.

  8. Herbin, E., and Lévy-Véhel, J. (2004). Fine analysis of the regularity of Gaussian processes: Stochastic 2-microlocal analysis, preprint.

  9. Hida, T., Kuo, H. H., Potthoff, J., and Streit, L. (1993). White Noise: An Infinite Dimensional Calculus, Kluwer Academic Press.

  10. Hu, Y., and Øksendal, B. (2003). Fractional white noise calculus and application to finance. Infinite Dimensional Analysis, Quantum Prob. and Related Topics. 6, 1–32.

  11. Ivanoff, G. (2003). Set-indexed processes: distributions and weak convergence, in: Topics in Spatial Stochastic Processes, Lecture Notes in Mathematics, 1802, Springer, 85–126.

  12. Ivanoff, G., and Merzbach, E. (2000). Set-Indexed Martingales, Chapman & Hall/CRC.

  13. Ivanoff G., Merzbach E. (2002). Random censoring in set-indexed survival analysis. Ann. Appl. Prob., 12(3): 944–971

    Article  MathSciNet  Google Scholar 

  14. Kamont A. (1996). On the fractional anisotropic Wiener field. Prob. and Math. Stat. 16(1): 85–98

    MathSciNet  Google Scholar 

  15. Kuo, H. H. (1996). White Noise Distribution Theory, CRC Press.

  16. Khoshnevisan, D. (2002). Multiparameter Processes: an introduction to random fields, Springer.

  17. Lévy-Véhel, J., and Riedi, R. (1997). Fractional Brownian motion and data traffic modeling: The other end of the spectrum. In Fractals in Engineering, Springer, 185–202.

  18. Peltier, R., and Lévy-Véhel, J. (1995). Multifractional Brownian motion: definition and preliminary results, Rapport de recherche INRIA 2645.

  19. Pesquet-Popescu, B. (1998). Modélisation bidimensionnelle de processus non stationnaires et application à l’étude du fond sous-marin, thèse de l’ENS Cachan.

  20. Pyke R. (1983). A uniform central limit theorem for partial sum processes indexed by sets. London Math. Soc. Lect. Notes 79, 219–240

    MathSciNet  Google Scholar 

  21. Sottinen, T. (2003). Fractional Brownian motion finance and queueing, PhD thesis of University of Helsinki.

  22. Talagrand M. (1995). Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Annals of Prob., 23(2): 767–775

    MathSciNet  Google Scholar 

  23. Samorodnitsky, G., and Taqqu, M. S. (1994). Stable non-Gaussian random processes, Chapman & Hall/CRC.

  24. Xiao Y. (1997). Hausdorff measure of the graph of fractional Brownian motion. Math. Proc. Camb. Phil. Soc. 122, 565–576

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ely Merzbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbin, E., Merzbach, E. A Set-indexed Fractional Brownian Motion. J Theor Probab 19, 337–364 (2006). https://doi.org/10.1007/s10959-006-0019-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-006-0019-0

Keywords

AMS Classification

Navigation