Skip to main content
Log in

Circuit complexity of linear functions: gate elimination and feeble security

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

In this paper, we consider provably secure cryptographic constructions in the context of circuit complexity. Based on the ideas of provably secure trapdoor functions developed in (Hirsch, Nikolenko, 2009; Melanich, 2009), we present a new linear construction of a provably secure trapdoor function with order of security 5/4. Besides, we present an in-depth general study of the gate elimination method for the case of linear functions. We also give a nonconstructive proof of lower bounds on the circuit complexity of linear Boolean functions and upper bounds on circuit implementations of linear Boolean functions, obtaining specific constants. Bibliography: 53 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ajtai, \( \Sigma_1^1 \)-formulae on finite structures,” Ann. Pure Logic, 24, 1–48 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Ajtai and C. Dwork, “A public-key cryptosystem with worst-case/average-case equivalence,” in: Proceedings of the 29th Annual ACM Symposium on Theory of Computing (1997), pp. 284–293.

  3. E. Allender, “Circuit complexity before the dawn of the new millenium,” in: Proceedings of the 16th Conference on Foundations of Software Technology and Theoretical Computer Science (1996), pp. 1–18.

  4. N. Alon, M. Karchmer, and A. Wigderson, “Linear circuits over GF(2),” SIAM J. Comput., 19, No. 6, 1064–1067 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Blum, “A boolean functions requiring 3n network size,” Theoret. Comput. Sci., 28, 337–345 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. B. Boppana and M. Sipser, “The complexity of finite functions,” in: J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity, Elsevier, Amsterdam (1990), pp. 757–804.

    Google Scholar 

  7. A. Davydow and S. I. Nikolenko, “Gate elimination for linear functions and new feebly secure constructions,” Lect. Notes Comput. Sci., 6651, 148–161 (2011).

    Article  Google Scholar 

  8. W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans. Inform. Theory, IT-22, 644–654 (1976).

    Article  MathSciNet  Google Scholar 

  9. C. Dwork, “Positive applications of lattices to cryptography,” Lect. Notes Comput. Sci., 1295, 44–51 (1997).

    Article  MathSciNet  Google Scholar 

  10. M. Furst, J. Saxe, and M. Sipser, “Parity, circuits, and the polynomial-time hierarchy,” Math. Systems Theory, 17, 13–27 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  11. O. Goldreich, Foundations of Cryptography. Basic Tools, Cambridge Univ. Press, Cambridge (2001).

    Book  MATH  Google Scholar 

  12. D. Grigoriev, E. A. Hirsch, and K. Pervyshev, “A complete public-key cryptosystem,” Groups Complex. Cryptol., 1, 1–12 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen, “On robust combiners for oblivious transfers and other primitives,” Lect. Notes Comput. Sci., 3494, 96–113 (2005).

    Article  MathSciNet  Google Scholar 

  14. J. Håstad, Computational Limitations for Small Depth Circuits, MIT Press, Cambridge, Massachusetts (1987).

    Google Scholar 

  15. A. P. Hiltgen, “Constructions of feebly-one-way families of permutations,” in: Proceeding of AsiaCrypt’92 (1992), pp. 422–434.

  16. A. P. Hiltgen, “Cryptographically relevant contributions to combinatorial complexity theory,” ETH-Zürich Dissertation, Hartung-Gorre Verlag, Konstanz (1994).

  17. A. P. Hiltgen, “Towards a better understanding of one-wayness: facing linear permutations.” Lect. Notes Comput. Sci., 1233, 319–333 (1998).

    Article  MathSciNet  Google Scholar 

  18. E. A. Hirsch and S. I. Nikolenko, “A feebly secure trapdoor function,” Lect. Notes Comput. Sci., 5675, 129–142 (2009).

    Article  Google Scholar 

  19. M. Immerman, “Languages which capture complexity classes,” SIAM J. Comput., 4, 760–778 (1987).

    Article  MathSciNet  Google Scholar 

  20. V. M. Khrapchenko, “Complexity of the realization of a linear function in the class of π-circuits,” Mat. Zametki, 9, No. 1, 36–40 (1971).

    Google Scholar 

  21. N. Koblitz, “The uneasy relationship between mathematics and cryptography,” Amer. Math. Soc., 54, 972–979 (2007).

    MathSciNet  MATH  Google Scholar 

  22. N. Koblitz and A. Menezes, “Another look at “Provable Security. II,” Lect. Notes Comput. Sci., 4329, 148–175 (2006).

    Article  MathSciNet  Google Scholar 

  23. N. Koblitz and A. Menezes, “Another look at Provable Security,” J. Cryptology, 20, No. 1, 3–37 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. A. Kojevnikov and S. I. Nikolenko, “On complete one-way functions,” Probl. Inf. Transm., 45, No. 2, 101–118 (2009).

    MathSciNet  Google Scholar 

  25. E. A. Lamagna and J. E. Savage, “On the logical complexity of symmetric switching functions in monotone and complete bases,” Technical Report, Brown University, Rhode Island (1973).

  26. L. A. Levin, “One-way functions and pseudorandom generators,” Combinatorica, 7, No. 4, 357–363 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  27. L. A. Levin, “One-way functions,” Probl. Inf. Transm., 39, No. 1, 92–103 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  28. O. B. Lupanov, “On a certain approach to the synthesis of control systems - the principle of local coding,” Probl. Kibern., 14, 31–110 (1965).

    MathSciNet  MATH  Google Scholar 

  29. A. A. Markov, “Minimal relay-diode bipoles for monotonic symmetric functions,” Probl. Kibern., 8, 205–212 (1964).

    Google Scholar 

  30. O. Melanich, “Nonlinear feebly secure cryptographic primitives,” PDMI Preprint, No. 12 (2009).

  31. E. I. Nechiporuk, “A boolean function,” Sov. Math. Dokl., 7, 999–1000 (1966).

    MATH  Google Scholar 

  32. W. J. Paul, “A 2∙5n lower bound on the combinational complexity of Boolean functions,” SIAM J. Comput., 6, 427–443 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  33. A. A. Razborov, “Lower bounds on monotone complexity of the logical permanent,” Mat. Zametki, 37, No. 6, 887–900 (1985).

    MathSciNet  Google Scholar 

  34. A. A. Razborov, “Lower bounds on the size of bounded depth circuits over a complete basis with logical addition,” Mat. Zametki, 41, No. 4, 598–908 (1987).

    MathSciNet  Google Scholar 

  35. A. A. Razborov, “Lower bounds complexity of symmetric boolean functions of contact-rectifier circuit,” Mat. Zametki, 48, No. 6, 79–90 (1990).

    MathSciNet  MATH  Google Scholar 

  36. O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (2005), pp. 84–93.

  37. O. Regev, “Lattice-based cryptography,” Lect. Notes Comput. Sci., 4117, 131–141 (2006).

    Article  MathSciNet  Google Scholar 

  38. R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptpsystems,” Comm. ACM, 21, No. 2, 120–126 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  39. J. E. Savage, The Complexity of Computing, Wiley, New York (1976).

    MATH  Google Scholar 

  40. C. E. Shannon, “Communication theory of secrecy systems,” Bell System Tech. J., 28, No. 4, 656–717 (1949).

    MathSciNet  MATH  Google Scholar 

  41. L. A. Sholomov, “On the realization of incompletely-defined boolean functions by circuits of functional elements,” Trans. System Theory Research, 21, 211–223 (1969).

    Google Scholar 

  42. R. Smolensky, “Algebraic methods in the theory of lower bounds for Booelan circuit complexity,” in: Proceedings of the 19th Annual ACM Symposium on Theory of Computing (1987), pp. 77–82.

  43. L. Stockmeyer, “The complexity of decision problems in automata theory and logic,” Ph.D. Thesis, Massachusetts Institute of Technology (1974).

  44. L. Stockmeyer, “On the combinational complexity of certain symmetric Boolean functions,” Math. Systems Theory, 10, 323–326 (1997).

    Article  MathSciNet  Google Scholar 

  45. L. Stockmeyer, “Classifying the computational complexity of problems,” J. Symbolic Logic, 52, 1–43 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  46. B. A. Subbotovskaya, “Realizations of linear functions of formulas using ⋁, &, \( {\neg} \)Sov. Math. Dokl., 2, 110–112 (1961).

    MATH  Google Scholar 

  47. B. A. Subbotovskaya, “On comparison of bases in the case of realization of functions of algebra of logic by formulas,” Sov. Math. Dokl., 149, No. 4, 784–787 (1963).

    Google Scholar 

  48. G. S. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communication,” J. IEEE, 55, 109–115 (1926).

    Google Scholar 

  49. H. Vollmer, Introduction to Circuit Complexity: a Uniform Approach, Springer-Verlag, Berlin−Heidelberg (1999).

    Google Scholar 

  50. I. Wegener, The Complexity of Boolean Functions, B. G. Teubner, Stuttart, and John Wiley & Sons, Chichester (1987).

    MATH  Google Scholar 

  51. R. Williams, “Nonuniform ACC circuit lower bounds,” in: Proceedings of the 26nd Annual IEEE Conference on Computational Complexity (2011), pp. 115–125.

  52. S. V. Yablonskii, “On the classes of functions of logic algebra with simple circuit realizations,” Uspekhi Mat. Nauk, 12, No. 6, 189–196 (1957).

    MathSciNet  Google Scholar 

  53. A. C.-C. Yao, “On ACC and threshold circuits,” in: Proceedings of the 31st Annual IEEE Symposium on the Foundations of Computer Science (1990), pp. 619–627.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Davydow.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 399, 2012, pp. 65–87.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davydow, A.P., Nikolenko, S.I. Circuit complexity of linear functions: gate elimination and feeble security. J Math Sci 188, 35–46 (2013). https://doi.org/10.1007/s10958-012-1104-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-1104-9

Keywords

Navigation