Skip to main content
Log in

Spectral stability of nonnegative self-adjoint operators

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The survey is devoted to spectral stability problems for uniformly elliptic differential operators under the variation of the domain and to the accompanying estimates for the difference of the eigenvalues. Two approaches to the problem are discussed in detail. In the first one it is assumed that the domain is transformed by means of a transformation of a certain class, and the spectral stability with respect to this transformation is investigated. The second approach is based on the notion of a transition operator and allows direct comparison of the eigenvalues on domains which are close in that or another sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ancona, “On strong barriers and an inequality on Hardy for domains in ℝn,” J. London Math. Soc., 34, 274–290 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  2. V. I. Arnold, “Modes and quasimodes,” Funkcional. Anal. Priložen., 6, 12–20 (1972).

    Google Scholar 

  3. I. Babuška, “Stability of the domains for the main problems of the theory of differential equations. I, II,” Czech. Math. J., 11(86), 76–105, 165–203 (1961).

    Google Scholar 

  4. I. Babuška and R. Výborný, “Continuous dependence of eigenvalues on the domain,” Czech. Math. J., 15(90), 169–178 (1965).

    Google Scholar 

  5. O. V. Besov, V. P. Il’in, and S. M. Nikol’ski, Integral Representation of Functions and Imbedding Theorems, Vol. I, II., Scripta Series in Mathematics, Halsted Press, New York-Toronto (1979).

    Google Scholar 

  6. H. Brezis and M. Marcus, “Hardy’s inequalities revisited,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25, 217–237 (1998).

    MathSciNet  Google Scholar 

  7. V. I. Burenkov, “Approximation of functions in the space W rp (Ω) by functions with compact support for an arbitrary open set Ω,” Proc. Steklov. Math. Inst., 131, 51–63 (1974).

    MathSciNet  Google Scholar 

  8. V. I. Burenkov, Sobolev Spaces on Domains, B. G. Teubner, Stuttgart-Leipzig (1998).

    MATH  Google Scholar 

  9. V. I. Burenkov and E. B. Davies, “Spectral stability of the Neumann Laplacian,” J. Differ. Equ., 186, 485–508 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  10. V. I. Burenkov and P. D. Lamberti, “Spectral stability of nonnegative self-adjoint opeartors,” Dokl. Math., 72, 507–511 (2005).

    MATH  Google Scholar 

  11. V. I. Burenkov and P. D. Lamberti, “Spectral stability of general nonnegative self-adjoint operators with applications to Neumann-type operators,” submitted for publication.

  12. V. I. Burenkov and P. D. Lamberti, “Spectral stability of Dirichlet second-order uniformly elliptic operators,” manuscript.

  13. V. I. Burenkov and P. D. Lamberti, “Spectral stability of high-order uniformly elliptic operators,” manuscript.

  14. V. I. Burenkov and M. Lanza de Cristoforis, “Spectral stability of the Robin Laplacian,” submitted for publication.

  15. P. Buser, “On Cheeger’s inequality λ 1h 2/4,” in: Geometry of the Laplace Operator (Proc. Symp. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 29–77 (1980).

    Google Scholar 

  16. T. Chatelain, “A new approach to two overdetermined eigenvalue problems of Pompeiu type,” Élasticité, viscoélasticité et contrôle optimal (Lyon, 1995), 235–242 (electronic), ESAIM Proc., 2, Soc. Math. Appl. Ind., Paris, 1997.

  17. J. Cheeger, “A lower bound for the smallest eigenvalue of the Laplacian,” in Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N.J., 195–199 (1970).

    Google Scholar 

  18. Y. Colin de Verdière, “Sur une hypothèse de transversalité d’Arnold,” Comment. Math. Helv., 63, 184–193 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York (1953).

    Google Scholar 

  20. S. J. Cox, “The generalized gradient at a multiple eigenvalue,” J. Funct. Anal., 133, 30–40 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  21. E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge (1990).

    Google Scholar 

  22. E. B. Davies, “Eigenvalue stability bounds via weighted Sobolev spaces,” Math. Z., 214, 357–371 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  23. E. B. Davies, Spectral Theory and Differential Operators, Cambridge University Press, Cambridge (1995).

    Google Scholar 

  24. E. B. Davies, “A review on Hardy inequalities,” in: The Maz’ya Anniversary Collection, Vol. 2 (Rostock, 1998), Operator Theory: Advances and Applications, Vol. 110, Birkhäuser Verlag, 55–67 (1999).

    Google Scholar 

  25. E. B. Davies, “Sharp boundary estimates for elliptic operators,” Math. Proc. Camb. Philos. Soc., 129, 165–178 (2000).

    Article  MATH  Google Scholar 

  26. D. M. Eidus, “Estimates for the modulus of eigenfunctions,” Dokl. Akad. Nauk, 90, 973–974 (1953).

    MathSciNet  Google Scholar 

  27. D. M. Eidus, “Some inequalities for eigenfunctions,” Dokl. Akad. Nauk, 107, 796–798 (1956).

    MathSciNet  Google Scholar 

  28. R. Hempel, L. A. Seco, and B. Simon, “The essential spectrum of Neumann Laplacians on some bounded singular domains,” J. Funct. Anal., 102, 448–483 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  29. D. Henry, Topics in Nonlinear Analysis, Trabalho de Matemática 192, Univ. Brasilia, Março (1982).

    Google Scholar 

  30. D. Henry, Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations, London Mathematical Society Lecture Note Series No. 318, Cambridge University Press, Cambridge (2005).

    MATH  Google Scholar 

  31. V. A. Il’in and I. A. Shishmaryev, “Uniform estimates in a closed domain for the eigenfunctions of an elliptic operator and their derivatives,” Izv. Akad. Nauk, 24, 883–896 (1960).

    MATH  Google Scholar 

  32. T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, Berlin-New York (1976).

    MATH  Google Scholar 

  33. P. D. Lamberti and M. Lanza de Cristoforis, “An analyticity result for the dependence of multiple eigenvalues and eigenspaces of the Laplace operator upon perturbation of the domain,” Glasgow Math. J., 44, 29–43 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  34. P. D. Lamberti and M. Lanza de Cristoforis, “A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator,” J. Nonlinear Convex Anal., 5, 19–42 (2004).

    MATH  MathSciNet  Google Scholar 

  35. P. D. Lamberti and M. Lanza de Cristoforis, “Lipschitz type inequalities for a domain dependent Neumann eigenvalue problem for the Laplace operator,” in H. G. W. Begehr, R. P. Gilbert, M. E. Muldoon, and M. W. Wong (Eds.), Advances in Analysis, Proceedings of the 4th International ISAAC Congress, York University, Toronto, Canada, 11–16 August 2003, World Scientific Publishing (2005).

  36. P. D. Lamberti and M. Lanza de Cristoforis, “Persistence of eigenvalues and multiplicity in the Neumann problem for the Laplace operator on nonsmooth domains,” Rendiconti del Circolo Matematico di Palermo, Serie II, Suppl., 76, 413–427 (2005).

    MathSciNet  Google Scholar 

  37. P. D. Lamberti and M. Lanza de Cristoforis, “A global Lipschitz continuity result for a domain dependent Dirichlet eigenvalue problem for the Laplace operator,” Z. Anal. Anwendungen, 24, 277–304 (2005).

    MATH  MathSciNet  Google Scholar 

  38. P. D. Lamberti and M. Lanza de Cristoforis, “A global Lipschitz continuity result for a domain dependent Neumann eigenvalue problem for the Laplace operator,” J. Differ. Equ., 216, 109–133 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  39. P. D. Lamberti and M. Lanza de Cristoforis, “Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems,” J. Math. Soc. Jpn., 58, 231–245 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  40. P. D. Lamberti and M. Lanza de Cristoforis, “Persistence of eigenvalues and multiplicity in the Dirichlet problem for the Laplace operator on nonsmooth domains,” Math. Phys., Anal., Geom., 9, 65–94 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  41. P. D. Lamberti and M. Lanza de Cristoforis, “A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Neumann problem for the Laplace operator,” submitted for publication.

  42. M. L. Lapidus and M. M. H. Pang, “Eigenfunctions of the Koch snowflake domain,” Commun. Math. Phys., 172, 359–376 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  43. D. Lupo and A. M. Micheletti, “On multiple eigenvalues of self-adjoint compact operators,” J. Math. Anal. Appl., 172, 106–116 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  44. D. Lupo and A. M. Micheletti, “On the persistence of the multiplicity of eigenvalues for some variational elliptic operator on the domain,” J. Math. Anal. Appl., 193, 990–1002 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  45. D. Lupo and A. M. Micheletti, “A remark on the structure of the set of perturbations which keep fixed the multiplicity of two eigenvalues,” Rev. Mat. Apl., 16, 47–56 (1995).

    MATH  MathSciNet  Google Scholar 

  46. A. M. Micheletti, “Perturbazione dello spettro dell’operatore di Laplace, in relazione ad una variazione del campo,” Ann. Scuola Norm. Sup. Pisa (3), 26, 151–169 (1972).

    MATH  MathSciNet  Google Scholar 

  47. A. M. Micheletti, “Perturbazione dello spettro di un operatore ellittico di tipo variazionale, in relazione ad una variazione del campo,” Ann. Mat. Pura Appl., 97, 267–281 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  48. A. M. Micheletti, “Perturbazione dello spettro di un operatore ellittico di tipo variazionale, in relazione ad una variazione del campo. II,” Ricerche Mat., 25, 187–200 (1976).

    MathSciNet  MATH  Google Scholar 

  49. J. Nečas, Les Méthodes Directes en Theorie des Equations Elliptiques, Masson et Cie, Paris (1967).

    Google Scholar 

  50. M. M. H. Pang, “Approximation of ground state eigenfunction on the snowflake region,” Bull. Lond. Math. Soc., 28, 488–494 (1996).

    Article  MATH  Google Scholar 

  51. M. M. H. Pang, “Approximation of ground state eigenvalues and eigenfunctions of Dirichlet Laplacians,” Bull. London Math. Soc., 29, 720–730 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  52. G. Pólya and M. Schiffer, “Convexity of functionals by transplantation,” J. Anal. Math., 3, 245–346 (1954).

    Article  MATH  Google Scholar 

  53. G. Prodi, “Dipendenza dal dominio degli autovalori dell’operatore di Laplace,” Ist. Lombardo Accad. Sci. Lett. Rend. A., 128, 3–18 (1994).

    MathSciNet  Google Scholar 

  54. F. Rellich, Perturbation Theory of Eigenvalue Problems, Gordon and Breach Science Publishers, New York (1969).

    MATH  Google Scholar 

  55. F. Riesz and B. Nagy, Functional Analysis, Dover Publications, Inc., New York, (1990).

    MATH  Google Scholar 

  56. L. N. Slobodetski, “Potential theory for parabolic equations,” Dokl. Akad. Nauk, 103, 19–22 (1955).

    Google Scholar 

  57. Kh. L. Smolitski, “Estimates for the derivatives of fundamental functions,” Dokl. Akad. Nauk, 74, 205–208 (1950).

    Google Scholar 

  58. J. Sokolowski and J. P. Zolésio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer, Berlin (1992).

    MATH  Google Scholar 

  59. M. Teytel, “How rare are multiple eigenvalues?,” Commun. Pure Appl. Math., 52, 917–934 (1999).

    Article  MathSciNet  Google Scholar 

  60. G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York-London (1987).

    MATH  Google Scholar 

  61. V. Ya. Yakubov, “Sharp estimates for L 2-normalized eigenfunctions of an elliptic operator,” Dokl. Akad. Nauk, 48, 52–55 (1994).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Burenkov.

Additional information

__________

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 15, Differential and Functional Differential Equations. Part 1, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burenkov, V.I., Lamberti, P.D. & Lanza de Cristoforis, M. Spectral stability of nonnegative self-adjoint operators. J Math Sci 149, 1417–1452 (2008). https://doi.org/10.1007/s10958-008-0074-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-0074-4

Keywords

Navigation