Skip to main content
Log in

Global behavior of solutions to an inverse problem for semilinear hyperbolic equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper is concerned with global in time behavior of solutions for a semilinear, hyperbolic, inverse source problem. We prove two types of results. The first one is a global nonexistence result for smooth solutions when the data is chosen appropriately. The second type of results is the asymptotic stability of solutions when the integral constraint vanishes as t goes to infinity. Bibliography: 22 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Bayrak, M. Can, and F. A. Aliyev, “Nonexistence of global solutions of a quasilinear hyperbolic equation,” Math. Inequal. Appl., 1, 367–374 (1998).

    MathSciNet  MATH  Google Scholar 

  2. Ya. Yu. Belov and T. N. Shipina, “The problem of determining the source function for a system of composite type,” J. Inv. Ill-Posed Problems, 6, 287–308 (1988).

    Article  MathSciNet  Google Scholar 

  3. M. Can, S. R. Park, and F. A. Aliyev, “Nonexistence of global solutions of some quasilinear hyperbolic equations,” J. Math. Anal. Appl., 213, 540–553 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Eden and V. K. Kalantarov, “On the global nonexistence of solutions to an inverse problem for semilinear parabolic equations,” J. Math. Anal. Appl. (submitted).

  5. D. Erdem and V. K. Kalantarov, “A remark on the nonexistence of global solutions to quasilinear hyperbolic and parabolic equations,” Appl. Math. Lett., 15, 521–653 (2002).

    Article  MathSciNet  Google Scholar 

  6. V. Georgiev and G. Todorova, “Existence of a solution of the wave equation with a nonlinear damping term,” J. Diff. Eqs., 109, 295–308 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. F. Guvenilir and V. K. Kalantarov, “The asymptotic behavior of solutions to an inverse problem for differential operator equations,” Math. Comp. Modeling, 37, 907–914 (2003).

    Article  MathSciNet  Google Scholar 

  8. Hu Bei Yin and Hong-Ming, “Semilinear parabolic equations with a prescribed energy,” Rend. Circ. Mat. Palermo (2), 44, 479–505 (1995).

    MathSciNet  MATH  Google Scholar 

  9. V. K. Kalantarov, “Collapse of solutions of parabolic and hyperbolic equations with nonlinear boundary conditions,” Zap. Nauchn. Semin. LOMI, 127, 75–83 (1983).

    MATH  MathSciNet  Google Scholar 

  10. V. K. Kalantarov, “Blow-up theorems for second-order nonlinear evolutionary equations,” in: Turbulence Modeling and Vortex Dynamics, O. Boratav, A. Eden, and A. Erzan (eds.), Lect. Notes Phys., Springer Verlag (1997), pp. 169–181.

  11. V. K. Kalantarov and O. A. Ladyzhenskaya, “Formation of collapses in quasilinear equations of parabolic and hyperbolic types,” Zap. Nauchn. Semin. LOMI, 69, 77–102 (1977).

    MATH  Google Scholar 

  12. M. Kirane and N. Tatar, “A nonexistence result to a Cauchy problem in nonlinear one-dimensional thermoelasticity,” J. Math. Anal. Appl., 254, 71–86 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. J. Knops, H. A. Levine, and L. E. Payne, “Nonexistence, instability, and growth theorems for solutions of a class of abstract nonlinear equations with applications to nonlinear elastodynamics,” Arch. Rat. Mech. Anal., 55, 52–72 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  14. H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form Pu tt = −Au + F(u),” Trans. Amer. Math. Soc., 192, 1–21 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  15. H. A. Levine, “Some additional remarks on the nonexistence of global solutions to nonlinear wave equations,” SIAM J. Math. Anal., 5, 138–146 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  16. H. A. Levine, “A note on a nonexistence theorem for some nonlinear wave equations,” SIAM J. Math. Anal., 5, 644–648 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  17. H. A. Levine and L. E. Payne, “Nonexistence of global weak solutions for classes of nonlinear wave and parabolic equations,” J. Math. Anal. Appl., 55, 329–334 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. I. Prilepko, D. G. Orlovskii, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York, Basel (2000).

    MATH  Google Scholar 

  19. Yuming Qin and J. M. Rivera, “Blow-up of solutions to the Cauchy problem in nonlinear one-dimensional thermoelasticity,” J. Math. Anal. Appl., 292, 160–193 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Straughan, “Further global nonexistence theorems for abstract nonlinear wave equations,” Proc. Amer. Math. Soc., 48, 381–390 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  21. I. A. Vasin and V. L. Kamynin, “On the asymptotic behavior of solutions to inverse problems for parabolic equations,” Sib. Mat. Zh., 38, 750–766 (1997).

    MathSciNet  MATH  Google Scholar 

  22. Z. Yang, “Cauchy problem for quasilinear wave equations with a nonlinear damping and source terms,” J. Math. Anal. Appl., 300, 218–243 (2004).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Olga Aleksandrovna Ladyzhenskaya

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 318, 2004, pp. 120–134.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eden, A., Kalantarov, V.K. Global behavior of solutions to an inverse problem for semilinear hyperbolic equations. J Math Sci 136, 3718–3727 (2006). https://doi.org/10.1007/s10958-006-0195-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0195-6

Keywords

Navigation