Skip to main content
Log in

Semilocal Convergence Analysis of S-iteration Process of Newton–Kantorovich Like in Banach Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In the present article, we establish a semilocal convergence theorem for the S-iteration process of Newton–Kantorovich like in Banach space setting for solving nonlinear operator equations and discuss its semilocal convergence analysis. We apply our result to solve the Fredholm-integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smooke, M.D.: Error estimate for the modified Newton’s method with applications to the solution of nonlinear, two-point boundary-value problems. J. Optim. Theory Appl. 39(4), 489–511 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angasarian, O.L.M.: A Newton’s method for linear programming. J. Optim. Theory Appl. 121(1), 1–18 (2004)

    Article  MathSciNet  Google Scholar 

  3. Kantorovich, L.V., Akilov, G.P.: Functional Analysis in Normed spaces. Pregamon Press, Oxford (1964)

    MATH  Google Scholar 

  4. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Series: Topological Fixed Point Theory and its Applications, vol. 6. Springer, New York (2009)

    MATH  Google Scholar 

  5. RallL, B.: Computational Solution of Nonlinear Operator Equations. Wiley, New York (1969)

    Google Scholar 

  6. Zeidler, E.: Applied Functional Analysis Main Principles and Their application. Springer, New York (1995)

    MATH  Google Scholar 

  7. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  8. Cajori, F.: Historical note on the Newton–Raphson method of approximation. Am. Math. Monthly 18(2), 29–32 (1911)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kantorovich, L.V.: On Newton’s method for functional equations. Dokl. Akad. Nauk. SSSR 59, 1237–1240 (1948). (in Russian)

    MathSciNet  Google Scholar 

  10. Kantorovich, L.V.: The majorant principle and Newton’s method. Dokl. Akad. Nauk SSSR 76, 17–20 (1951). (in Russian)

    Google Scholar 

  11. Chen, M., Khan, Y., Yildirim, A.: Newton-Kantorovich convergence theorem of a modified Newton’s method under the \(\gamma \) -condition in a Banach space. J. Optim. Theory appl. 157, 651–662 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Proinov, P.D.: New general convergence theory for iterative process and its applications to Newton- Kantorovich type theorems. J. Complex. 26, 3–42 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Argyros, I.K.: On Newton’s method under mild differentiability conditions and applications. Appl. Math. Comput. 102, 177–183 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Argyros, I.K., Hilout, S.: Improved generaliged differentiability conditions for Newton-like methods. J. Complex. 26, 316–333 (2010)

    Article  MATH  Google Scholar 

  15. Argyros, I.K., Hilout, S.: Majorizing sequences for iterative methods. J. Comput. Appl. Math. 236, 1947–1960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Argyros, I.K.: An improved error analysis for Newton-like methods under generalized conditions. J. Comput. Appl. Math. 157, 169–185 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Argyros, I.K., Hilout, S.: On the convergence of Newton-type methods under mild differentiability conditions. Number Algorithms 52, 701–726 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sahu, D.R., Singh, K.K., Singh Vipin, K.: Some Newton-like methods with sharper error estimates for solving operator equations in Banach spaces. Fixed Point Theory Appl. 78, 1–20 (2012)

  19. Sahu, D.R., Singh, K.K., Singh Vipin, K.: A Newton-like method for generalized operator equations in Banach spaces. Number Algorithms 67, 289–303 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ezquerro, J.A., González, D., Hernández, M.A.: Majorizing sequences for Newton’s method from initial value problems. J. Comput. Appl. Math. 236(9), 2246–2258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ezquerro, J.A., González, D., Hernández, M.A.: A modification of the classic conditions of Newton–Kantorovich for Newton’s method. Math. Comput. Modelling 57, 584–594 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ezquerro, J.A., González, D., Hernández, M.A.: A semilocal convergence result for Newton’s method under generalized conditions of Kantorovich. J. Complex. 30, 309–324 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 8, 61–79 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–610 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ishikawa, S.: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147–150 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sahu, D.R.: Applications of the S-iteration process to constrained minimization problems and split feasibility problems. Fixed Point Theory 12, 187–204 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Sahu, D.R.: Strong convergence of a fixed point iteration process with applications. International Conference on Recent Advances in Mathematical Sciences and Applications, pp. 100–116 (2009)

  28. Sahu, D.R., Singh, K.K.: On generalized Newton’s method for solving operator equations. Filomat 26(5), 1055–1063 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, X.H.: Convergence of Newton’s method and inverse function theorem in Banach space. Math. Comput. 68, 169–186 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, X.H.: Convergence of Newton’s method and uniqueness of the solution of equations in Banach space. IMA J. Numer. Anal. 20, 123–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R., Gross, K., Martin, C. (eds.) The Merging of Disciplines: New Directions, pp. 185–196. Springer, New York (1986). (Pure Appl. Comput. Math.)

    Chapter  Google Scholar 

  32. Shen, W., Li, C.: Smale’s \(\alpha \)-theory for inexact Newton methods under the \(\gamma \)-condition. J. Math. Anal. Appl. 369, 29–42 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Argyros, I.K., Khattri, S.K., Hilout, S.: Expanding the applicability of Inexact Newton methods under Smale’s \((\alpha,\gamma )\) -theory. Appl. Math. Comput. 224, 224–237 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Zhao, Y., Wu, Q.: Convergence analysis for a deformed Newton’s method with third-order in Banach space under \(\gamma \)-condition. Int. J. Comput. Math. 86, 441–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen Chih Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, D.R., Yao, J.C., Singh, V.K. et al. Semilocal Convergence Analysis of S-iteration Process of Newton–Kantorovich Like in Banach Spaces. J Optim Theory Appl 172, 102–127 (2017). https://doi.org/10.1007/s10957-016-1031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-1031-x

Keywords

Mathematics Subject Classification

Navigation