Skip to main content
Log in

Semicoercive Variational Inequalities: From Existence to Numerical Solution of Nonmonotone Contact Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a novel numerical solution procedure for semicoercive hemivariational inequalities. As a concrete example, we consider a unilateral semicoercive contact problem with nonmonotone friction modeling the deformation of a linear elastic block in a rail, and provide numerical results for benchmark tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Demyanov, V.F., Rubinov, A.M.: Constructive Nonsmooth Analysis. Approximation & Optimization, vol. 7. Peter Lang, Frankfurt am Main (1995)

    MATH  Google Scholar 

  2. Demyanov, V.F., Stavroulakis, G.E., Polyakova, L.N., Panagiotopoulos, P.D.: Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics Nonconvex Optimization and its Applications, vol. 10. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  3. Panagiotopoulos, P.D.: Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  4. Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995)

    MATH  Google Scholar 

  5. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Application. Convex and nonconvex energy functions. Birkhäuser, Basel (1998)

    Google Scholar 

  6. Goeleven, D., Motreanu, D., Dumont, Y., Rochdi, M.: Variational and Hemivariational Inequalities: Theory, Methods and Applications, vol. II: Unilateral problems. Kluwer, Dordrecht (2003)

    Book  MATH  Google Scholar 

  7. Baniotopoulos, C.C., Haslinger, J., Morávková, Z.: Contact problems with nonmonotone friction: discretization and numerical realization. Comput. Mech. 40, 157–165 (2007)

    Article  MATH  Google Scholar 

  8. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  9. Penot, J.-P.: Noncoercive problems and asymptotic conditions. Asymptot. Anal. 49, 205–215 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Brézis, H.: Equations et inequations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18, 115–175 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fichera, G.: Boundary value problems in elastacity with unilateral constraints. In: Flügge, S. (ed.) Handbuch der Physik. VIa / 2, pp. 347–389. Springer, Berlin (1972)

  12. Baiocchi, C., Gastaldi, F., Tomarelli, F.: Some existence results on noncercive variational inequalities. Ann. Scuola Norm. Sup. Pisa cl. Sci. 4, 13 (1986)

    MathSciNet  MATH  Google Scholar 

  13. Buttazzo, G., Tomarelli, F.: Compatibility conditions for nonlinear Neumann problems. Adv. Math. 89(2), 127–143 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Panagiotopoulos, P.D.: Coercive and semicoercive hemivariational inequalities. Nonlinear Anal. 16(3), 209–231 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goeleven, D., Théra, M.: Semicoercive variational hemivariational inequalities. J. Global Optim. 6(4), 367–381 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Adly, S., Goeleven, D., Théra, M.: Recession mappings and noncoercive variational inequalities. Nonlinear Anal. Ser. A 26(9), 1573–1603 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gwinner, J.: A note on pseudomonotone functions, regularization, and relaxed coerciveness. Nonlinear Anal. 30, 4217–4227 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chadli, O., Chbani, Z., Riahi, H.: Some existence results for coercive and noncoercive hemivariational inequalities. Appl. Anal. 69(1–2), 125–131 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chadli, O., Chbani, Z., Riahi, H.: Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete Contin. Dyn. Syst. 5(1), 185–196 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Naniewicz, Z.: Semicoercive variational-hemivariational inequalities with unilateral growth conditions. J. Global Optim. 17(1–4), 317–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Adly, S., Théra, M., Ernst, E.: Stability of the solution set of non-coercive variational inequalities. Commun. Contemp. Math. 4(1), 145–160 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, Zhen-Hai: Elliptic variational hemivariational inequalities. Appl. Math. Lett. 16(6), 871–876 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chadli, O., Schaible, S., Yao, J.C.: Regularized equilibrium problems with application to noncoercive hemivariational inequalities. J. Optim. Theory Appl. 121(3), 571–596 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chadli, O., Liu, Z., Yao, J.C.: Applications of equilibrium problems to a class of noncoercive variational inequalities. J. Optim. Theory Appl. 132(1), 89–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Costea, N., Radulescu, V.D.: Hartman-Stampacchia results for stably pseudomonotone operators and non-linear hemivariational inequalities. Appl. Anal. 89(2), 175–188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Costea, N., Matei, A.: Contact models leading to variational-hemivariational inequalities. J. Math. Anal. Appl. 386(2), 647–660 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tang, Guo-Ji, Huang, Nan-jing: Existence theorems of the variational-hemivariational inequalities. J. Global Optim. 56(2), 605–622 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lahmdani, A., Chadli, O., Yao, J.C.: Existence of solutions for noncoercive hemivariational inequalities by an equilibrium approach under pseudomonotone perturbation. J. Optim. Theory Appl. 160(1), 49–66 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Methods for Hemivariational Inequalities. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  30. Hintermüller, M., Kovtunenko, V.A., Kunisch, K.: Obstacle problems with cohesion: a hemivariational inequality approach and its efficient numerical solution. SIAM J. Optim. 21(2), 491–516 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kaplan, A., Tichatschke, R.: Stable Methods for Ill-posed Variational Problems: Prox-Regularization of Elliptic Variational Inequalities and Semi-infinite Problems. Akademie-Verlag, Berlin (1994)

    MATH  Google Scholar 

  32. Gwinner, J.: Discretization of semicoercive variational inequalities. Aequ. Math. 42(1), 72–79 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gwinner, J.: A discretization theory for monotone semicoercive problems and finite element convergence for p-harmonic signorini problems. ZAMM J. Appl. Math. Mech. 74(9), 417–427 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Spann, W.: Error estimates for the approximation of semicoercive variational inequalities. Numer. Math. 69(1), 103–116 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dostál, Z., Friedlander, A., Santos, S.A.: Solution of coercive and semicoercive contact problems by FETI domain decomposition. Contemp. Math. 218, 82–93 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Adly, S., Goeleven, D.: A discretization theory for a class of semi-coercive unilateral problems. Numer. Math. 87(1), 1–34 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dostál, Z., Horák, D.: Scalable FETI with optimal dual penalty for semicoercive variational inequalities. Contemp. Math. 329, 79–88 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Namm, R.V., Woo, G., Xie, Shu-Sen, Yi, S.: Solution of semicoercive Signorini problem based on a duality scheme with modified Lagrangian functional. J. Korean Math. Soc. 49(4), 843–854 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gwinner, J., Ovcharova, N.: From solvability and approximation of variational inequalities to solution of nondifferentiable optimization problems in contact mechanics. Optimization 64(8), 1683–1702 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ovcharova, N.: Regularization methods and finite element approximation of hemivariational inequalities with applications to nonmonotone contact problems. Ph.D. Thesis, Universität der Bundeswehr München. Cuvillier Verlag, Göttingen (2012)

  41. Ovcharova, N., Gwinner, J.: A study of regularization techniques of nondifferentiable optimization in view of application to hemivariational inequalities. J. Optim. Theory Appl. 162(3), 754–778 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Adly, S., Théra, M., Ernst, E.: Well-positioned closed, convex sets and well-positioned closed, convex functions. J. Global Optim. 29(4), 337–351 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (2008)

    MATH  Google Scholar 

  44. Gwinner, J.: Nichtlineare Variationsungleichungen mit Anwendungen. Ph.D. Thesis, Universität Mannheim. Haag-Herchen Verlag, Frankfurt (1978)

  45. Jeggle, H.: Nichtlineare Funktionalanalysis. Teubner, Stuttgart (1979)

    Book  MATH  Google Scholar 

  46. Goeleven, D., Gwinner, J.: On semicoerciveness, a class of variational inequalities, and an application to von Kármán plates. Math. Nachr. 244, 89–109 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Stampacchia, G.: Variational inequalities. In: Ghizetti, A. (ed.) Theory and Applications of Monotone Operators. Edizione Oderisi, Gubbio, pp. 101–192 (1969)

  48. Hess, P.: On semicoercive nonlinear problems. Indiana Univ. Math. J. 23, 645–654 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  49. Schatzman, M.: Problèmes aux limites non linéaires, non coercifs. Ann. Scuola Norm. Sup. Pisa 3(27), 641–686 (1974)

    MathSciNet  MATH  Google Scholar 

  50. Clarke, F.: Optimization and Nonsmooth Analysis. John Wiley, New York (1983)

    MATH  Google Scholar 

  51. Noll, D.: Convergence of non-smooth descent methods using Kurdyka-Lojasiewicz inequality. J. Optim. Theory Appl. 160(2), 553–572 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Ovcharova.

Additional information

Communicated by Antonino Maugeri.

Dedicated to the memory of Professor V. F. Demyanov and Professor S. Schaible.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovcharova, N., Gwinner, J. Semicoercive Variational Inequalities: From Existence to Numerical Solution of Nonmonotone Contact Problems. J Optim Theory Appl 171, 422–439 (2016). https://doi.org/10.1007/s10957-016-0969-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0969-z

Keywords

Mathematics Subject Classification

Navigation