Skip to main content
Log in

On Newton’s Method for the Fermat–Weber Location Problem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper considers the Fermat–Weber location problem. It is shown that, after a suitable initialization, the standard Newton method can be applied to the Fermat–Weber problem, and is globally and locally quadratically convergent. A numerical comparison with the popular Weiszfeld algorithm shows that Newton’s method is significantly more efficient than the Weiszfeld scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boltyanski, V., Martini, H., Soltan, V.: Geometric Methods and Optimization Problems. Kluwer, Dordrecht (1999)

    Book  MATH  Google Scholar 

  2. Drezner, Z., Klamroth, K., Schöbel, A., Wesolowsky, G.O.: The Weber problem. In: Drezner, Z., Hamacher, H.W. (eds.) Facility Location. Applications and Theory, pp. 1–36. Springer, Berlin (2002)

    Chapter  Google Scholar 

  3. Drezner, Z.: Facility Location. A Survey of Applications and Methods. Springer, Berlin (1995)

    Book  Google Scholar 

  4. Love, R.F., Morris, J.G., Wesolowsky, G.O.: Facilities Location. Models & Methods. Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  5. Nickel, S., Puerto, J.: Location Theory: A Unified Approach. Springer, Berlin (2005)

    MATH  Google Scholar 

  6. Kupitz, Y.S., Martini, H., Spirova, M.: The Fermat–Torricelli problem, part I: a discrete gradient-based approach. J. Optim. Theory Appl. 158, 305–327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jahn, T., Kupitz, Y.S., Martini, H., Richter, C.: Minsum location extended to gauges and to convex sets. J. Optim. Theory Appl. 166, 711–746 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Martini, H., Swanepoel, K.J., Weiss, G.: The Fermat–Torricelli problem in normed planes and spaces. J. Optim. Theory Appl. 115, 283–314 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mordukhovich, B., Nam, N.M.: Applications of variational analysis to a generalized Fermat–Torricelli problem. J. Optim. Theory Appl. 148, 431–454 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nam, N.M., Hoang, N.: A generalized Sylvester problem and a generalized Fermat–Torricelli problem. J. Convex Anal. 20, 669–687 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Beck, A., Sabach, S.: Weiszfeld’s method: old and new results. J. Optim. Theory Appl. 164, 1–40 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nesterov, Y.: A method for solving a convex programming problem with rate of convergence \( O (1/k^2) \). Sov. Math. Dokl. 269, 543–547 (1983). (in Russian)

    MathSciNet  Google Scholar 

  13. Katz, I.N.: Local convergence in Fermat’s problem. Math. Program. 6, 89–104 (1974)

    Article  MATH  Google Scholar 

  14. Jiang, J.-L., Cheng, K., Wang, C.-C., Wang, L.-P.: Accelerating the convergence in the single-source and multi-source Weber problems. Appl. Math. Comput. 218, 6814–6824 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Levin, Y., Ben-Israel, A.: The Newton bracketing method for convex minimization. Comput. Optim. Appl. 21, 213–229 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Overton, M.L.: A quadratically convergent method for minimizing a sum of Euclidean norms. Math. Program. 27, 34–63 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Calamai, P.H., Conn, A.R.: A projected Newton method for \( \ell _p \) norm location problems. Math. Program. 38, 75–109 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Y.: A Newton acceleration of the Weiszfeld algorithm for minimizing the sum of Euclidean distances. Comput. Optim. Appl. 10, 219–242 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vardi, Y., Zhang, C.H.: A modified Weiszfeld algorithm for the Fermat–Weber location problem. Math. Program. 90, 559–566 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jarre, F., Toint, P.L.: Simple examples for the failure of Newton’s method with line search for strictly convex minimization. Math. Program. (2015). doi:10.1007/s10107-015-0913-2

  21. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  22. Sun, W., Yuan, Y.-X.: Optimization Theory and Methods. Nonlinear Programming. Springer, Berlin (2006)

    MATH  Google Scholar 

  23. Warth, W., Werner, J.: Effiziente Schrittweitenfunktionen bei unrestringierten Optimierungsaufgaben. Computing 19, 59–72 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mascarenhas, W.F.: Newton’s iterates can converge to non-stationary points. Math. Program. 112, 327–334 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Beck, A.: Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB. MOS-SIAM Series on Optimization. SIAM, Philadelphia, PA (2014)

  26. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kanzow.

Additional information

Communicated by Horst Martini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Görner, S., Kanzow, C. On Newton’s Method for the Fermat–Weber Location Problem. J Optim Theory Appl 170, 107–118 (2016). https://doi.org/10.1007/s10957-016-0946-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0946-6

Keywords

Mathematics Subject Classification

Navigation