Skip to main content
Log in

Lagrange Duality for Evenly Convex Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

An evenly convex function on a locally convex space is an extended real-valued function, whose epigraph is the intersection of a family of open halfspaces. In this paper, we consider an infinite-dimensional optimization problem, for which both objective function and constraints are evenly convex, and we recover the classical Lagrange dual problem for it, via perturbational approach. The aim of the paper was to establish regularity conditions for strong duality between both problems, formulated in terms of even convexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fenchel, W.: A remark on convex sets and polarity. Comm. Sèm. Math. Univ. Lund (Medd. Lunds Algebra Univ. Math. Sem.) Tome Supplémentaire 3, 82–89 (1952)

  2. Daniilidis, A., Martínez-Legaz, J.E.: Characterizations of evenly convex sets and evenly quasiconvex functions. J. Math. Anal. Appl. 273, 58–66 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Goberna, M.A., Jornet, V., Rodríguez, M.M.L.: On linear systems containing strict inequalities. Linear Algebra Appl. 360, 151–171 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Goberna, M.A., Rodríguez, M.M.L.: Analyzing linear systems containing strict inequalities via evenly convex hulls. Eur. J. Oper. Res. 169, 1079–1095 (2006)

    Article  MATH  Google Scholar 

  5. Klee, V., Maluta, E., Zanco, C.: Basic properties of evenly convex sets. J. Convex Anal. 14, 137–148 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Rodríguez, M.M.L., Vicente-Pérez, J.: On evenly convex functions. J. Convex Anal. 18, 721–736 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Martínez-Legaz, J.E., Vicente-Pérez, J.: The e-support function of an e-convex set and conjugacy for e-convex functions. J. Math. Anal. Appl. 376, 602–612 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Martínez-Legaz, J.E.: Quasiconvex duality theory by generalized conjugation methods. Optimization 19, 603–652 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fajardo, M.D., Vicente-Pérez, J., Rodríguez, M.M.L.: Infimal convolution, c-subdifferentiability and Fenchel duality in evenly convex optimization. Top 20, 375–396 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Penot, J.-P.: Variational analysis for the consumer theory. J. Optim. Theory Appl. 159, 769–794 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fajardo, M.D.: Regularity conditions for strong duality in evenly convex optimization problems. An application to Fenchel duality. J. Convex Anal. 22 (2015)

  12. Goberna, M.A., Jeyakumar, V., López, M.A.: Necessary and sufficient constraint qualifications for solvability of systems of infinite convex inequalities. Nonlinear Anal. Theory Methods Appl. 68, 1184–1194 (2008)

    Article  MATH  Google Scholar 

  13. Jeyakumar, V., Dinh, N., Lee, G.M.: A new closed constraint qualification for convex optimization. Applied Mathematics Report AMR 04/8, University of New South Wales (2004)

  14. Boţ, R.I., Wanka, G.: An alternative formulation for a new closed cone constraint qualification. Nonlinear Anal. 64, 1367–1381 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moreau, J.J.: Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math. Pures Appl. 49, 109–154 (1970)

    MathSciNet  MATH  Google Scholar 

  16. Martínez-Legaz, J.E.: Generalized convex duality and its economic applications. In: Hadjisavvas, N., Komlósi, S., Schaible, S. (eds.) Handbook of Generalized Convexity and Generalized Monotonicity, pp. 237–292. Springer, New York (2005)

    Chapter  Google Scholar 

  17. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland Publishing Company, Amsterdam (1976)

    MATH  Google Scholar 

  18. Boţ, R.I., Csetnek, E.R.: Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements. Optimization 61, 35–65 (2009)

    Google Scholar 

  19. Rockafellar, R.T.: Conjugate Duality and Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 16. SIAM Publications, Philadelphia (1974)

    Google Scholar 

  20. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, New Jersey (2002)

    Book  MATH  Google Scholar 

  21. Burachik, R.S., Jeyakumar, V.: A new geometric condition for Fenchel’s duality in infinite dimensional spaces. Math. Program. Ser. B 104, 229–233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Boţ, R.I.: Conjugate Duality in Convex Optimization. In: Lecture Notes in Economics and Mathematical Systems, vol. 637. Springer, Berlin (2010)

  23. Köthe, G.: Topological Vector Spaces. Springer, Berlin (1969)

    MATH  Google Scholar 

  24. Munkres, J.R.: Topology, a First Course. Prentice Hall, New Jersey (1975)

    MATH  Google Scholar 

  25. Vicente-Pérez, J.: Nuevos resultados sobre e-convexidad. Ph.D. thesis, University of Murcia (2011)

Download references

Acknowledgments

This research was partially supported by MINECO of Spain, Grant MTM2011-29064-C03-02 and by Consellería d’Educació de la Generalitat Valenciana, Spain, Pre-doc Program Vali+d, DOCV 6791/07.06.2012 Grant ACIF-2013-156. The authors wish to thank anonymous referees for their valuable comments and suggestions that have significantly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María D. Fajardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fajardo, M.D., Rodríguez, M.M.L. & Vidal, J. Lagrange Duality for Evenly Convex Optimization Problems. J Optim Theory Appl 168, 109–128 (2016). https://doi.org/10.1007/s10957-015-0775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0775-z

Keywords

Mathematics Subject Classification

Navigation