Skip to main content
Log in

The Bound-Constrained Conjugate Gradient Method for Non-negative Matrices

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Existing conjugate gradient (CG)-based methods for convex quadratic programs with bound constraints require many iterations for solving elastic contact problems. These algorithms are too cautious in expanding the active set and are hampered by frequent restarting of the CG iteration. We propose a new algorithm called the Bound-Constrained Conjugate Gradient method (BCCG). It combines the CG method with an active-set strategy, which truncates variables crossing their bounds and continues (using the Polak–Ribière formula) instead of restarting CG. We provide a case with n=3 that demonstrates that this method may fail on general cases, but we conjecture that it always works if the system matrix A is non-negative. Numerical results demonstrate the effectiveness of the method for large-scale elastic contact problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kalker, J.: Three-Dimensional Elastic Bodies in Rolling Contact. Solid Mechanics and Its Applications. Kluwer Academic, Amsterdam (1990)

    Book  Google Scholar 

  2. Vollebregt, E.: User guide for CONTACT, Vollebregt & Kalker’s rolling and sliding contact model. Tech. Rep. TR09-03. version 13.1, VORtech BV (2013). See www.kalkersoftware.org

  3. Hager, W., Zhang, H.: A new active set algorithm for box constrained optimization. SIAM J. Optim. 17(2), 526–557 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Moré, J., Toraldo, G.: On the solution of large quadratic programming problems with bound constraints. SIAM J. Optim. 1, 93–113 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertsekas, D.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  6. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2000)

    Google Scholar 

  7. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  8. Shewchuk, J.: An introduction to the conjugate gradient method without the agonizing pain. Tech. rep., Carnegie mellon University, Pittsburgh, PA, USA (1994)

  9. Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)

    Google Scholar 

  10. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  11. Hestenes, M.: Conjugate Direction Methods in Optimization, Applications of Mathematics vol. 12. Springer, New York (1980)

    Book  Google Scholar 

  12. Polyak, B.: The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9, 94–112 (1969)

    Article  Google Scholar 

  13. O’Leary, D.: A generalized conjugate gradient algorithm for solving a class of quadratic programming problems. Linear Algebra Appl. 34, 371–399 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dembo, R., Tulowitzki, U.: On the minimization of quadratic functions subject to box constraints. Tech. Rep., School of Organization and Management, Yale University, New Haven, CT (1983)

  15. Yang, E., Tolle, J.: A class of methods for solving large convex quadratic programs subject to box constraints. Math. Program. 51, 223–228 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Birgin, E., Martínez, J.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 22, 101–125 (2002)

    Article  Google Scholar 

  17. Dostál, Z., Schöberl, J.: Minimizing quadratic functions subject to bound constraints with the rate of convergence and finite termination. Comput. Optim. Appl. 30, 23–43 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Polonsky, I., Keer, L.: A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradients techniques. Wear 231, 206–219 (1999)

    Article  Google Scholar 

  19. Sainsot, P., Lubrecht, A.: Efficient solution of the dry contact for rough surfaces: a comparison of fast Fourier transform and multigrid methods. Proc. Inst. Mech. Eng., Part J J. Eng. Tribol. 225, 441–448 (2011)

    Google Scholar 

  20. Polak, E., Ribière, G.: Note sur la convergence de méthodes de directions conjugées. Rev. Francaise Inform. Rech. Opér. 16, 35–43 (1969)

    Google Scholar 

  21. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in Fortran 77 The Art of Scientific Computing 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  22. Vollebregt, E.: A Gauss–Seidel type solver for special convex programs, with application to frictional contact mechanics. J. Optim. Theory Appl. 87(1), 47–67 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. HinterMüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2003)

    Article  MATH  Google Scholar 

  24. Meyer, C.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  25. Vollebregt, E.: A new solver for the elastic normal contact problem using conjugate gradients, deflation, and an FFT-based preconditioner. J. Comput. Phys., Part A 257, 333–351 (2014). doi:10.1016/j.jcp.2013.10.005

    Article  MathSciNet  Google Scholar 

  26. Nogi, T., Kato, T.: Influence of a hard surface layer on the limit of elastic contact—Part I: Analysis using a real surface model. ASME J. Tribol. 119, 493–500 (1997)

    Article  Google Scholar 

  27. Webster, M., Sayles, R.: A numerical model for the elastic contact of real rough surfaces. ASME J. Tribol. 108, 314–320 (1986)

    Article  Google Scholar 

  28. Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  29. Dekking, F., Kalker, J., Vollebregt, E.: Simulation of rough, elastic contacts. J. Appl. Mech. 64, 361–368 (1997)

    Article  MATH  Google Scholar 

  30. Vollebregt, E.: Condition and eigenvalues of the elastic normal contact problem. Report EV/M13.003, VORtech BV (2013). Available upon request

  31. Liu, S., Wang, Q.: Studying contact stress fields caused by surface tractions with a discrete convolution and Fast Fourier transform algorithm. ASME J. Tribol. 124, 36–45 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to my colleagues Jok Tang, Martin van Gijzen, Kees Oosterlee, and Jing Zhao for valuable discussions on this work. Thanks to Jing Zhao for her work on the test problem. Thanks to VORtech (Mark Roest) for supporting this work financially. Thanks also to the reviewers for their comments and suggestions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin A. H. Vollebregt.

Additional information

Communicated by Johannes O. Royset.

Appendix: MATLAB Code

Appendix: MATLAB Code

The Matlab code below implements the Enhanced BCCG algorithm. Plain BCCG is obtained by setting use_plain=1; in the fourth line, the NORM+CG algorithm is obtained when use_normcg=1;.

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollebregt, E.A.H. The Bound-Constrained Conjugate Gradient Method for Non-negative Matrices. J Optim Theory Appl 162, 931–953 (2014). https://doi.org/10.1007/s10957-013-0499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0499-x

Keywords

Navigation