, Volume 127, Issue 3, pp 565-577

Dynamic Pricing via Dynamic Programming1

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This article specifies an efficient numerical scheme for computing optimal dynamic prices in a setting where the demand in a given period depends on the price in that period, cumulative sales up to the current period, and remaining market potential. The problem is studied in a deterministic and monopolistic context with a general form of the demand function. While traditional approaches produce closed-form equations that are difficult to solve due to the boundary conditions, we specify a computationally tractable numerical procedure by converting the problem to an initial-value problem based on a dynamic programming formulation. We find also that the optimal price dynamics preserves certain properties over the planning horizon: the unit revenue is linearly proportional to the demand elasticity of price; the unit revenue is constant over time when the demand elasticity is constant; and the sales rate is constant over time when the demand elasticity is linear in the price.

1We acknowledge professor robert e. kalaba for initiating this work and suggesting solution methods.