Skip to main content

Advertisement

Log in

Targeted Support for Using Technology-Enhanced Science Inquiry Modules

  • Published:
Journal of Science Education and Technology Aims and scope Submit manuscript

Abstract

Designing effective professional development experiences for technology-enhanced inquiry instruction is the goal of the Technology Enhanced Learning in Science (TELS) NSF funded Center for Learning and Teaching. In order to provide this type of support to a large number of teachers, we devised a targeted professional development approach. Participating teachers implemented short inquiry modules that featured interactive scientific visualizations. We collaborated with 16 schools in eight districts and five states. This paper reports the design, implementation, and refinement of the targeted approach. Findings from interview data show that teachers faced challenges that are often associated with enacting technology innovations in K-12 classrooms. The targeted professional development approach addressed the challenges and allowed teachers to successfully implement the modules in their classrooms. The interview data clarify teachers’ perspectives on how using technology impacted their teaching practices and their ideas about student learning. This work contributes to a growing body of literature that identifies and addresses barriers to integrating technology into K-12 classrooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ball DL (1996) Teacher learning and the mathematics reforms: what do we think we know and what do we need to learn? Phi Delta Kappan 77:500–508

    Google Scholar 

  • Ball DL, Cohen DK (1996) Reform by the book: what is—or might be—the role of curriculum materials in teacher leaning and instructional reform. Edu Res 25(9):6–8, 14

    Google Scholar 

  • Becker HJ, Ravitz JL, Wong Y (1999) Teacher and teacher-directed student use of computers and software. Teaching, learning, and computing: 1998 national survey report #3. Center for Research on Information Technology and Organizations: University of California, Irvine & University of Minnesota

  • Bielaczyc K (2006) Designing social infrastructure: critical issues in creating learning environments with technology. J Learn Sci 15(3):301–329

    Article  Google Scholar 

  • Blumenfeld P, Fishman BJ, Krajcik J, Marx RW, Soloway E (2000) Creating usable innovations in systemic reform: scaling up technology-embedded project-based science in urban schools. Edu Psychol 35(3):149–164

    Article  Google Scholar 

  • Bowyer JB, Gerard LF, Marx RW (accepted) Leadership and policy. In: Kali Y, Linn MC, Koppal M, Roseman JE (eds) Designing coherent science education. Teachers College Press, New York

  • Bransford JD, Brown AL et al. (eds) (2000) How people learn: brain, mind, experience, and school. National Research Council, Washington

    Google Scholar 

  • Brown AL (1992) Design experiments: theoretical and methodological challenges in creating complex interventions in classroom settings. J Learn Sci 2(2):32–42

    Article  Google Scholar 

  • Brown JS, Collins A, Duguid P (1989) Situated cognition and the culture of learning. Edu Res 18:32–42

    Google Scholar 

  • Bybee RW, Fuchs B (2006) Preparing the 21st century workforce: a new reform in science and technology education. J Res Sci Teach 43(4):349–352

    Article  Google Scholar 

  • Cobb P, Confrey J, diSessa A, Lehrer R, Schauble L (2003) Design experiments in educational research. Edu Res 32(1):9–13

    Google Scholar 

  • Cuban L, Kirpatrick H, Peck C (2001) High access and low use of technologies in high school classrooms: explaining an apparent paradox. Am Edu Res J 38(4):813–834

    Article  Google Scholar 

  • Davis EA (2004) Knowledge integration in science teaching: analyzing teachers’ knowledge development. Res Sci Edu 34:21–53

    Article  Google Scholar 

  • Davis EA (2006) Preservice elementary teachers’ critique of instructional materials for science. Sci Edu 90(2):3–14

    Article  Google Scholar 

  • Davis EA, Krajcik JS (2005) Designing educative curriculum materials to promote teacher learning. Edu Res 34(3):3–14

    Google Scholar 

  • Fishman B, Marx RW, Blumenfeld P, Krajick J, Soloway E (2004) Creating a framework for research on systemic technology innovations. J Learn Sci 13(1):43–76

    Article  Google Scholar 

  • Fogelman J, Fishman B, Krajcik J (2006) Sustaining innovations through lead teacher learning: a learning sciences perspective on supported professional development. Teach Edu 17(2):181–194

    Article  Google Scholar 

  • Hew KF, Brush T (2006) Integrating technology into K-12 teaching and learning: current knowledge gaps and recommendations for future research. Educational technology research development (published online). Available at http://www.springerlink.com/content/b85322485mw2w162/?p=f19bfb307eab43e78a12bae365701ff4&pi=0

  • Johnson CC (2006) Effective professional development and change in practice: barriers science teachers encounter and implications for reform. School Sci Math 106(3):150–161

    Article  Google Scholar 

  • Krajcik JS, Blumenfeld PC, Marx RW, Soloway E (2004) A collaborative model for helping middle grade science teachers learn project-based instruction. Elementary School J 94(5):483–497

    Article  Google Scholar 

  • Linn MC (2006a) The knowledge integration perspective on learning and instruction. In: Sawyer RK (ed) The Cambridge handbook of the learning sciences. Cambridge University Press, New York, pp 243–264

    Google Scholar 

  • Linn MC (2006b) WISE teachers: using technology and inquiry for science instruction. In: Ashburn EA, Floden RE (eds) Meaningful learning using technology: what educators need to know. Teachers College Press, New York, pp 45–69

    Google Scholar 

  • Linn MC, Clark D, Slotta JD (2003) WISE design for knowledge integration. Sci Edu 87:517–538

    Article  Google Scholar 

  • Linn MC, Davis EA, Bell P (2004) Internet environments for science education. Lawrence Erlbaum Associates, Mahwah

    Google Scholar 

  • Linn MC, Eylon BS, Davis EA (2004) The knowledge integration perspective on learning. In: Linn MC, Davis EA, Bell P (eds) Internet environments for science education. Lawrence Erlbaum Associates, Mahwah, pp 29–46

    Google Scholar 

  • Linn MC, Hsi S (2000) Computers, teachers, and peers: science learning partners. Erlbaum, Mahwah

    Google Scholar 

  • Linn MC, Lee H, Tinker R, Husic F, Chiu JL (2006) Inquiry learning: teaching and assessing knowledge integration in science. Science 313(5790):1049–1050

    Article  Google Scholar 

  • Matese G, Marshall S, Edelson D (2000) Understanding adoption of software tools: comparative case studies of teacher beliefs about and use of inquiry-support software. In: Fishman B, O’Connor-Divelbiss S (eds) Fourth international conference of the learning sciences. Lawrence Erlbaum Associates, Mahwah, pp 33–38

    Google Scholar 

  • National Board for Professional Teaching Standards (2007) Guide to National Board Certification. Retrieved, February 14, 2007 from http://www.nbpts.org/

  • Olson J (2000) Trojan horse or teaches pet? Computers and the culture of the school. J Curriculum Stud 32(1):1–8

    Article  Google Scholar 

  • Peers CE, Diezmann CM, Watters JJ (2003) Supports and concerns for teacher professional growth during the implementation of a science curriculum innovation. Res Sci Edu 33:89–110

    Article  Google Scholar 

  • Putnam RT, Borko H (2000) What do new views on knowledge and thinking have to say about research on teacher learning? Edu Res 29(1):4–15

    Google Scholar 

  • Quintana C, Reiser BJ, Davis EA, Krajcik J, Fretz E, Duncan RG, Kyza E, Edelson D, Soloway E (2004) A scaffolding design framework for software to support science inquiry. J Learn Sci 13(3):337–386

    Article  Google Scholar 

  • Schlager M, Fusco J (2004) Teacher professional development, technology, and communities of practice: are we putting the cart before the horse? In: Barab S, Kling R, Gray J (eds) Designing for virtual communities in the service of learning. Cambridge University Press, Cambridge

    Google Scholar 

  • Schneider RM, Krajcik J, Blumenfeld P (2005) Enacting reform-based science materials: the range of teacher enactments in reform classrooms. J Res Sci Teach 42(3):283–312

    Article  Google Scholar 

  • Selwyn N (1999) Differences in educational computer use: the influences of subject cultures. Curriculum J 10(1):83–90

    Google Scholar 

  • Singer J, Marx RW, Krajcik JS, Clay-Chambers J (2000) Constructing extended inquiry projects: curriculum materials for science education reform. Edu Psychol 35(3):164–178

    Google Scholar 

  • Slotta JD (2004) The web-based inquiry science environment (WISE): scaffolding knowledge integration in the science classroom. In: Linn MC, Davis EA, Bell P (eds) Internet environments for science education. Lawrence Erlbaum Associates, Mahwah, pp 202–232

    Google Scholar 

  • Songer N (1996) Exploring learning opportunities in coordinated network-enhanced classrooms: a case of kids as global scientists. J Learn Sci 5(4):297–327

    Article  Google Scholar 

  • Songer NB, Lee HS, Kam R (2002) Technology-rich inquiry science in urban classrooms: what are the barriers to inquiry pedagogy? J Res Sci Teach 39(2):128–150

    Article  Google Scholar 

  • Spitulnik M, Linn MC (2006) Professional development and teachers’ curriculum customizations: supporting science in diverse middle schools. Paper presented at the National Association for Research in Science Teaching (NARST), San Francisco, CA

  • Tate ED, Finley J (2006) How do multiple visualizations impact middle school students’ understanding of velocity? Poster presented at the annual meeting of American Educational Research Association (AERA), San Francisco, CA

  • U.S. Department of Education (2004) New no child left behind flexibility: highly qualified teachers fact sheet. Retrieved, February 14, 2007 from http://www.ed.gov/nclb/methods/teachers/hqtflexibility.html

  • Watson DM (2001) Pedagogy before technology: re-thinking the relationship between ICT and teaching. Edu Inf Technol 6(4):251–266

    Article  Google Scholar 

  • Williams M, Linn M, Ammon P, Gearhart M (2004) Learning to teach inquiry science in a technology-based environment: a case study. J Sci Edu Technol 13(2):189–206

    Article  Google Scholar 

  • York-Barr J, Duke K (2004) What do we know about teacher leadership? Findings from two decades of scholarship. Rev Edu Res 74(3):255–316

    Article  Google Scholar 

  • Zhao Y, Pugh K, Sheldon S, Byers JL (2002) Conditions for classroom technology innovations. Teachers College Record 104(3):482–515

    Article  Google Scholar 

  • Zembal-Saul C, Blumenfeld P, Krajcik J (2000) Influence of guided cycles of planning, teaching, and reflection on prospective elementary teachers’ science content representations. J Res Sci Teach 37(4):318–339

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under grant No. 0334199. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors gratefully acknowledge helpful discussions of these ideas with members of the Web-based Inquiry Science Environment group and the Technology Enhanced Learning in Science center. Special thanks go to Stephanie Corliss, Tara Higgins, Doug Kirpatrick, Hee-Sun Lee, Ji Shen, and Michele Spitulnik for stimulating discussions and comments on earlier drafts. The authors appreciate help in production of this manuscript from Jonathan Breitbart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisha Varma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varma, K., Husic, F. & Linn, M.C. Targeted Support for Using Technology-Enhanced Science Inquiry Modules. J Sci Educ Technol 17, 341–356 (2008). https://doi.org/10.1007/s10956-008-9104-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10956-008-9104-8

Keywords

Navigation