Skip to main content
Log in

Information Dynamics at a Phase Transition

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose a new way of investigating phase transitions in the context of information theory. We use an information-entropic measure of spatial complexity known as configurational entropy (CE) to quantify both the storage and exchange of information in a lattice simulation of a Ginzburg–Landau model with a scalar order parameter coupled to a heat bath. The CE is built from the Fourier spectrum of fluctuations around the mean-field and reaches a minimum at criticality. In particular, we investigate the behavior of CE near and at criticality, exploring the relation between information and the emergence of ordered domains. We show that as the temperature is increased from below, the CE displays three essential scaling regimes at different spatial scales: scale free, turbulent, and critical. Together, they offer an information-entropic characterization of critical behavior where the storage and fidelity of information processing is maximized at criticality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shannon, C.E.: The mathematical theory of communication. Bell Syst. Techn. J. 27:379–423, 623–656 (1948)

  2. Huffman, D.: A method for the construction of minimum-redundancy codes. Proc. IRE 40, 1098–1101 (1952)

    Article  MATH  Google Scholar 

  3. Sethna, J.P.: Statistical Mechanics: Entropy, Order Paramenters, and Complexity. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  4. Seeger, R.J.: On teaching thermophysics. Am. J. Phys. 26, 248–257 (1958)

    Article  ADS  MATH  Google Scholar 

  5. Brillouin, L.: Science and Information Theory, pp. 318–328. Academic Press, New York (1956)

    MATH  Google Scholar 

  6. ibid.: Thermodynamics, statistics, and information. Am. J. Phys. 29, 318–328 (1961)

  7. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon: Entropy, Information, Computing. Princeton University Press, Princeton (1990)

  9. Parrondo, J.M.R., Horowitz, J.M., Sagawa, T.: Thermodynamics of information. Nat. Phys. 11, 131–139 (2015)

    Article  Google Scholar 

  10. Gleiser, M., Stamatopoulos, N.: Entropic measure for localized energy configurations: kinks, bounces, and bubbles. Phys. Lett. B 713, 304–307 (2012)

    Article  ADS  Google Scholar 

  11. Correa, R.A.C., de Souza Dutra, A., Gleiser, M.: Information-entropic measure of energy-degenerate kinks in two-field models. Phys. Lett. B 737, 388–394 (2014)

    Article  ADS  MATH  Google Scholar 

  12. Gleiser, M., Sowinski, D.: Information-entropic stability bound for compact objects: application to Q-balls and the Chandrasekhar limit of polytropes. Phys. Lett. B 727, 272–275 (2013)

    Article  ADS  MATH  Google Scholar 

  13. Gleiser, M., Jiang, N.: Stability bounds on compact astrophysical objects from information-entropic measure. Phys. Rev. D 92, 044046 (2015)

    Article  ADS  Google Scholar 

  14. Gleiser, M., Stamatopoulos, N.: Information content of spontaneous symmetry breaking. Phys. Rev. D 86, 045004 (2012)

    Article  ADS  Google Scholar 

  15. Gleiser, M., Graham, N., Stamatopoulos, N.: Generation of coherent structures after cosmic inflation. Phys. Rev. D 83, 096010 (2011)

    Article  ADS  Google Scholar 

  16. Gleiser, M., Graham, N.: Transition to order after hilltop inflation. Phys. Rev. D 89, 083502 (2014)

    Article  ADS  Google Scholar 

  17. Gleiser, M., Sowinski, D.: Information-entropic signature of the critical point. Phys. Lett. B 747, 125–128 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Goldenfeld, N.: Lectures on Phase Transitions and The Renormalization Group. Frontiers in Physics, vol. 85. Addison-Wesley, New York (1992)

    Google Scholar 

  19. Landau, L.: On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19–32 (1937)

    Google Scholar 

  20. Hunt, J.C.R., Philips, O.M., Williams, D. (eds.): Turbulence and Stochastic Processes: Kolmogorov’s Ideas 50 Years On, vol. 434, pp. 1–240. The Royal Society, London (1991)

  21. Langer, J.S.: An introduction to the kinetics of first-order phase transitions. In: Godrche, G. (ed.) Solids Far from Equilibrium. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  22. Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  23. Borrill, J., Gleiser, M.: Matching numerical simulations to continuum field theories: a lattice renormalization study. Nucl. Phys. B 483, 416 (1997)

    Article  ADS  Google Scholar 

  24. Lindeberg, T.: Scale-space for discrete signals. PAMI 12(3), 234–254 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

DS was supported by a Hull Fellowship at Dartmouth College. MG was supported in part by a US Department of Energy Grant DE-SC001038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Gleiser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sowinski, D., Gleiser, M. Information Dynamics at a Phase Transition. J Stat Phys 167, 1221–1232 (2017). https://doi.org/10.1007/s10955-017-1762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1762-6

Keywords

Navigation