Skip to main content
Log in

Generalized Nonlinear Fluctuation-Dissipation Relation for the One-Component Plasma

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 2016

Abstract

We present a novel procedure leading to compact and tractable cubic \((p=3)\) and quartic \((p=4)\) scalar fluctuation-dissipation relations for the classical one-component plasma subjected to a weak external Coulombic perturbation; there is no external magnetic field. The ultimate goal here is to establish a generalized nonlinear fluctuation-dissipation relation in which a single \((p+1)\)-point dynamical structure function is expressed as a linear combination of pth-order external density response functions. When cast in this form, such an architecture, by definition, is invariant with respect to rotation on the (\(p+1\))-sided polygon formed by the wave vector-frequency arguments of the dynamical structure function. The application of this rotation symmetry to suppress unphysical isolated singularities is a basic ingredient of the derivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubo, R.: Statistical mechanical theory of irreversible processes. 1. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  2. Kubo, R.: Some Aspects of the Statistical-Mechanical Theory of Irreversible Processes. In: Brittin, W.E., Dunham, L.G. (eds.) Lectures in Theoretical Physics. Interscience, New York (1959)

    Google Scholar 

  3. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)

    Article  ADS  MATH  Google Scholar 

  4. Bergara, A., Campillo, I., Pitarke, J.M., Echenique, P.M.: Quadratic induced polarization by an external heavy charge in an electron gas. Phys. Rev. B 56, 15654–15664 (1997)

    Article  ADS  Google Scholar 

  5. Bergara, A., Pitarke, J.M., Echenique, P.M.: Quadratic electronic response of a two-dimensional electron gas. Phys. Rev. B 59, 10145–10151 (1999)

    Article  ADS  Google Scholar 

  6. Melrose, D.B.: Symmetry properties of nonlinear responses in a plasma. Plasma Phys. 14, 1035–1046 (1972)

    Article  ADS  Google Scholar 

  7. Melrose, D.B., Kuijpers, J.: Resonant parts of nonlinear response tensors. J. Plasma Phys. 32, 239–253 (1984)

    Article  ADS  Google Scholar 

  8. Percival, D.J., Robinson, P.A.: Exact evaluation of the quadratic response tensor for three-wave interactions in Maxwellian plasmas. Phys. Plasma 5, 1279–1287 (1998)

    Article  ADS  Google Scholar 

  9. Percival, D.J., Robinson, P.A.: Generalized plasma dispersion functions. J. Math Phys. 39, 3678–3693 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Layden, B., Cairns, I.H., Robinson, P.A., Percival, D.J.: Exact evaluation of the quadratic longitudinal response function for an unmagnetized Maxwellian plasma. Phys. Plasmas 19, 072308-1–072308–15 (2012)

    Article  ADS  Google Scholar 

  11. Bloembergen, N.: Nonlinear optics. W. A. Benjamin, New York (1965). papers reproduced therein

    MATH  Google Scholar 

  12. Mukamel, S.: Principals of nonlinear optical spectroscopy. Oxford University Press, New York (1995)

    Google Scholar 

  13. Popov, S.V., Svirko, Y.P., Zheludev, N.I.: Susceptibility tensors for nonlinear optics. Institute of Physics Publishers, Bristol (1995)

    Google Scholar 

  14. Golden, K.I., Kalman, G., Silevitch, M.B.: Nonlinear fluctuation-dissipation theorem. J. Stat. Phys. 6, 87–118 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  15. Golden, K.I., De-xin, Lu: Dynamical three-point correlations and quadratic response functions in binary ionic mixture plasmas. J. Stat. Phys. 29, 281–307 (1982)

    Article  ADS  Google Scholar 

  16. Golden, K.I., Kalman, G.: Plasma response functions, fluctuation-dissipation relations and the velocity-average-approximation. Ann. Phys. 143, 160–178 (1982)

    Article  ADS  Google Scholar 

  17. Sitenko A. G.: The fluctuation-dissipation relation in nonlinear electrodynamics. Zh. Eksp. Tepr. Fiz.75, 104–115 (1978) [Sov. Phys. JETP 48, 51–57 (1978)]

  18. Kalman, G.J., Xiao-Yue, Gu: Quadratic fluctuation-dissipation theorem: The quantum domain. Phys. Rev. A 36, 3399–3414 (1987)

    Article  ADS  Google Scholar 

  19. Mukamel, S.V., Khidekel, V., Chernyak, V.: Classical chaos and fluctuation-dissipation relations for nonlinear response. Phys. Rev. E 53, R1–R4 (1996)

    Article  ADS  Google Scholar 

  20. Friedman, H.L., Ben-Naim, A.: Calculation of the effect of non-brownian motion on some dc transport coefficients in solution. J. Chem. Phys. 48, 120–127 (1968)

    Article  ADS  Google Scholar 

  21. Harris, S., Friedman, H.L.: Effects of details of dynamics on dc transport coefficients in solution. J. Chem. Phys. 50, 765–770 (1969)

    Article  ADS  Google Scholar 

  22. Efremov G. F.: A fluctuation dissipation theorem for nonlinear media. Zh. Eksp. Teor. Fiz. 55, 2322–2333 (1968) [Sov. Phys. 28, 1232–1237 (1969)]

  23. Bochkov, G. N., Kozovlev Y. E.: General theory of thermal fluctuations in nonlinear systems. Zh. Eksp. Teor. Fiz. 72, 238–247 (1977) [Sov. Phys. JETP 45, 125–130 (1977)]

  24. Evans, T.S.: Three-point functions at finite temperature. Phys. Lett. B 249, 286–290 (1990)

    Article  ADS  Google Scholar 

  25. Evans, T.S.: Spectral representation of three-point functions at finite temperature. Phys. Lett. B 252, 108–112 (1990)

    Article  ADS  Google Scholar 

  26. Stratonovich, R.L.: Nonequilibrium thermodynamics. Sprimger, Berlin (1992)

    MATH  Google Scholar 

  27. Golden, K.I., Heath, J.T.: Hierarchy of fluctuation-dissipation theorems for the classical one-component plasma. Contrib. Plasma Phys. 55, 236–242 (2015)

    Article  ADS  Google Scholar 

  28. Heath, Joshuah T.: Hierarchy in the static fluctuation-dissipation theorem of one-component Plasmas. Honors Thesis, University of Vermont (2014)

  29. Muskhelishvili, N.I.: Singular Integral Equations, 2nd edn. Dover Publications, Inc., New York (1991)

    MATH  Google Scholar 

  30. Davies, K.T.R., Davies, R.W., White, G.D.: Dispersion relations for causal Green’s functions: Derivations using the Poincaré-Bertrand theorem and its generalizations. J. Math. Phys. 31, 1356–1373 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Stillinger, F.H., Lovett, R.: Ion-Pair theory of concentrated electrolytes. I. Basic concepts. J. Chem. Phys. 48, 3858–3868 (1968)

    Article  ADS  Google Scholar 

  32. Stillinger, F.H., Lovett, R.: General restriction on the distribution of ions in electrolytes. J. Chem. Phys. 49, 1991–1994 (1968)

    Article  ADS  Google Scholar 

  33. Vieillefosse, P.: Sum rules and perfect screening conditions for the one-component plasma. J. Stat. Phys. 41, 1015–1035 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  34. Alastuey, A.: Generalize Stillinger–Lovett conditions for the one-component plasma. J. Phys. Paris 49, 1507–1511 (1988)

    Article  Google Scholar 

  35. Golden, K.I., Kalman, G., Datta, T.: Sum rules for nonlinear plasma response functions. Phys. Rev. A 11, 2147–2151 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth I. Golden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golden, K.I., Heath, J.T. Generalized Nonlinear Fluctuation-Dissipation Relation for the One-Component Plasma. J Stat Phys 162, 199–217 (2016). https://doi.org/10.1007/s10955-015-1395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1395-6

Keywords

Navigation