Skip to main content
Log in

Gaussian Networks Generated by Random Walks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose a random walks based model to generate complex networks. Many authors studied and developed different methods and tools to analyze complex networks by random walk processes. Just to cite a few, random walks have been adopted to perform community detection, exploration tasks and to study temporal networks. Moreover, they have been used also to generate networks with different topologies (e.g., scale-free). In this work, we define a random walker that plays the role of “edges-generator”. In particular, the random walker generates new connections and uses these ones to visit each node of a network. As result, the proposed model allows to achieve networks provided with a Gaussian degree distribution; moreover we found that some properties of achieved Gaussian networks, as the clustering coefficient and the assortativity, show a critical behavior. Finally, we performed numerical simulations to study the behavior and the properties of the cited model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albert, R., Jeong, H., Barabasi, A.L.: Internet: diameter of the World Wide Web. Nature 401, 130–131 (1999)

    Article  ADS  Google Scholar 

  2. Capocci, A., Servedio, V.D.P., Colaiori, F., Buriol, L.S., Donato, D., Leonardi, S., Caldarelli, G.: Preferential attachment in the growth of social networks: the internet encyclopedia Wikipedia. Phys. Rev. E 74(3), 036116 (2006)

    Article  ADS  Google Scholar 

  3. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.: Organization, development and function of complex brain networks. Trends Cogn. Sci. 8(9), 418–425 (2004)

    Article  Google Scholar 

  4. Albert, R., Barabasi, A.L.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Erdos, P., Renyi, P.: On the evolution of random graphs. Publ. Math. Inst. Hungary Sci 5, 17–61 (1960)

    MathSciNet  Google Scholar 

  6. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  ADS  Google Scholar 

  7. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys 74, 47–97 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Bianconi, G., Barabasi, A.L.: Bose–Einstein condensation in complex networks. Phys. Rev. Lett. 86, 5632–5635 (2001)

    Article  ADS  Google Scholar 

  9. Bianconi, G.: Quantum statistics in complex networks. Phys. Rev. E 66, 056123 (2002)

    ADS  Google Scholar 

  10. Javarone, M.A., Armano, G.: Quantum-classical transitions in complex networks. J. Theory Exp. 2013(4), P04019 (2013)

    Google Scholar 

  11. Javarone, M.A.: Fermionic networks: modeling adaptive complex networks with fermionic gases. arXiv:1408.3151 (2014)

  12. Hartonen, T., Annila, A.: Natural networks as thermodynamic systems. Complexity 18(2), 53–62 (2012)

    Article  Google Scholar 

  13. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguna, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82, 036106 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. Javarone, M.A., Armano, G.: Perception of similarity: a model for social network dynamics. J. Phys A 46, 455102 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  16. Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Lett. 94(1), 018102 (2005)

    Article  ADS  Google Scholar 

  17. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  ADS  Google Scholar 

  18. Zhou, H.: Distance, dissimilarity index, and network community structure. Phys. Rev. E 67(6), 061901 (2003)

    Article  ADS  Google Scholar 

  19. Tadic, B.: Exploring complex graphs by random walks. In: Proceedings of the AIP Conference , vol. 661(24) (2003).

  20. Starnini, M., Baronchelli, A., Barrat, A., Pastor-Satorras, R.: Random walks on temporal networks. Phys. Rev. E 85(5), 056115 (2012)

    Article  ADS  Google Scholar 

  21. Faccin, M., Johnson, T., Biamonte, J., Kais, S., Migdal, P.: Degree distribution in quantum walks on complex networks. Phys. Rev. X 3–4, 041007 (2013)

    Google Scholar 

  22. Saramaki, J., Kaski, K.: Scale-free networks generated by random walks. Physica A 341–1, 80–86 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. Gonzalez, M.C., Lind, P.G., Herrmann, H.J.: System of mobile agents to model social networks. Phys. Rev. Lett. 96(8), 088702 (2006)

    Article  ADS  Google Scholar 

  24. Noh, J.D., Rieger, H.: Random walks on complex networks. Phys. Rev. Lett. 92(11), 118701 (2004)

    Article  ADS  Google Scholar 

  25. Sood, V., Redner, S., Ben-Avraham, D.: First passage properties of the Erdös-Renyi random graph. J. Phys. A 38(1), 109 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Jonasson, J.: On the cover time for random walks on random graphs. Comb. Probab. Comput. 7–3, 265–279 (1998)

    Article  MathSciNet  Google Scholar 

  27. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Hardiman, S., Katzir, L.: Estimating clustering coefficients and size of social networks via random walk. In: Proceedings of the 22nd international conference on World Wide Web, pp. 539–550 (2013).

  29. Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90–5, 058701 (2003)

    Article  Google Scholar 

  31. Johnson, S., Torres, J., Marro, J., Muñoz, M.A.: Entropic origin of disassortativity in complex networks. Phys. Rev. Lett. 104(10), 108702 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Fondazione Banco di Sardegna for supporting his work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Alberto Javarone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javarone, M.A. Gaussian Networks Generated by Random Walks. J Stat Phys 159, 108–119 (2015). https://doi.org/10.1007/s10955-014-1175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1175-8

Keywords

Navigation