Skip to main content
Log in

Renormalisation of 2D Cellular Automata with an Absorbing State

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We describe a real-space renormalisation scheme for non-equilibrium probabilistic cellular automata (PCA) models, and apply it to a two-dimensional binary PCA. An exact renormalisation scheme is rare, and therefore we provide a method for computing the stationary probability distribution of states for such models with which to weight the renormalisation, effectively minimising the error in the scale transformation. While a mean-field approximation is trivial, we use the principle of maximum entropy to incorporate nearest-neighbour spin-correlations in the steady-state probability distribution. In doing so we find the fixed point of the renormalisation is modified by the steady-state approximation order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balzter, H., Braun, P.W., Küohler, K.: Cellular automata models for vegetation dynamics. Ecol. Model. 107(2–3), 113–125 (1998). doi:10.1016/S0304-3800(97)00202-0. http://linkinghub.elsevier.com/retrieve/pii/S0304380097002020

  2. Burraston, D., Edmonds, E.: Cellular automata in generative electronic music and sonic art: a historical and technical review. Digit. Creat. 16(3), 165–185 (2005a). doi:10.1080/14626260500370882

    Article  Google Scholar 

  3. De Oliveira, M.J., Satulovsky, J.E.: Renormalization group of probabilistic cellular automata with one absorbing state. Phys. Rev. E 55(6), 6377 (1997). doi:10.1103/PhysRevE.55.6377

    Article  ADS  MathSciNet  Google Scholar 

  4. Edlund, E., Nilsson Jacobi, M.: Renormalization of cellular automata and self-similarity. J. Stat. Phys. 139(6), 972–984 (2010). doi:10.1007/s10955-010-9974-z

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Hinrichsen, H.: Non-equilibrium phase transitions. Phys. A 369(1), 1–28 (2006). doi:10.1016/j.physa.2006.04.007. http://linkinghub.elsevier.com/retrieve/pii/S037843710600402X

  6. Ilachinski, A.: Zane, Cellular Automata: A Discrete Universe. World Scientific Publishing Co., Inc, River Edge (2001)

    Google Scholar 

  7. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2(12), 2221–2229 (1992). doi:10.1051/jp1:1992277

    Google Scholar 

  8. Toméand, T., de Oliveira, M.J., Tomé, T.: Renormalization group of the Domany–Kinzel cellular automaton. Phys. Rev. E 55(4), 4000–4004 (1997). doi:10.1103/PhysRevE.55.4000

    Article  ADS  Google Scholar 

  9. Vespignani, A., Zapperi, S., Loreto, V.: Renormalization of nonequilibrium systems with critical stationary states. Phys. Rev. Lett. 77(22), 4560–4563 (1996). doi:10.1103/PhysRevLett.77.4560

    Article  ADS  Google Scholar 

  10. Weaver, I.S., Prügel-Bennett, A.: Renormalization group approach to 1D cellular automata with large updating neighborhoods. Complexity (2014). doi:10.1002/cplx.21557

Download references

Acknowledgments

This work was supported by an EPSRC Doctoral Training Centre Grant (EP/G03690X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain S. Weaver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weaver, I.S., Prügel-Bennett, A. Renormalisation of 2D Cellular Automata with an Absorbing State. J Stat Phys 159, 211–220 (2015). https://doi.org/10.1007/s10955-014-1142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1142-4

Keywords

Navigation