Skip to main content
Log in

Scale-Free Correlations in Flocking Systems with Position-Based Interactions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a model of self-propelled agents with spring-like interactions that depend only on relative positions, and not on relative orientations. We observe that groups of these agents self-organize to achieve collective motion (CM) through a mechanism based on the cascading of self-propulsion energy towards lower elastic modes. By computing the correlation functions of the speed and velocity fluctuations for different group sizes, we show that the corresponding correlation lengths are proportional to the linear size of the group and have no intrinsic length scale. We argue that such scale-free correlations are a natural consequence of the position-based interactions and associated CM dynamics. We hypothesize that this effect, acting in the context of more complex realistic interactions, could be at the origin of the scale-free correlations measured experimentally in flocks of starlings, instead of the previously argued proximity to a critical regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Grigera, T.S., Jelic, A., Melillo, S., Parisi, L., Pohl, O., Shen, E., Viale, M.: Superfluid transport of information in turning flocks of starlings. arXiv:1303.7097 (2013)

  2. Bak, P.: How Nature Works: The Science of Self-organized Criticality. Copernicus Series. Springer, Berlin (1999)

    Google Scholar 

  3. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci 105(4), 1232–1237 (2008)

    Article  ADS  Google Scholar 

  4. Bialek, W., Cavagna, A., Giardina, I., Mora, T., Pohl, O., Silvestri, E., Viale, M., Walczak, A.M.: Social interactions dominate speed control in poising natural flocks near criticality. Proc Natl Acad Sci 111(20), 7212–7217 (2014)

    Article  ADS  Google Scholar 

  5. Bialek, W., Cavagna, A., Giardina, I., Mora, T., Silvestri, E., Viale, M., Walczak, A.M.: Statistical mechanics for natural flocks of birds. Proc Natl Acad Sci 109(13), 4786–4791 (2012)

    Article  ADS  Google Scholar 

  6. Binney, J.J., Dowrick, N.J., Fisher, A.J., Newman, M.E.J.: The Theory of Critical Phenomena: An Introduction to Renormalization Group. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  7. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7, 1–41 (2013)

    Article  Google Scholar 

  8. Breder, C.: Equations descriptive of fish schools and other animal aggregations. Ecology 35(3), 361–370 (1954)

    Article  Google Scholar 

  9. Buhl, J., Sumpter, D., Couzin, I., Hale, J., Despland, E., Miller, E., Simpson, S.: From disorder to order in marching locusts. Science 312(5778), 1402–1406 (2006)

    Article  ADS  Google Scholar 

  10. Buhl, J., Sword, G.A., Simpson, S.J.: Using field data to test locust migratory band collective movement models. Interface Focus 2(6), 757–763 (2012)

    Article  Google Scholar 

  11. Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Tavarone, R.: From empirical data to inter-individual interactions: unveiling ther rules of collective animal behavior. Math. Models Methods Appl. Sci. 20(1), 1491–1510 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Viale, M.: Scale-free correlations in starling flocks. Proc Natl Acad Sci 107(26), 11865–11870 (2010)

    Article  ADS  Google Scholar 

  13. Cavagna, A., Giardina, I., Ginelli, F.: Boundary information inflow enhances correlation in flocking. Phys. Rev. Lett. 110, 168107 (2013)

    Article  ADS  Google Scholar 

  14. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516 (2005)

    Article  ADS  Google Scholar 

  15. Czirók, A., Stanley, H.E., Vicsek, T.: Spontaneously ordered motion of self-propelled particles. J. Phys. A 30(5), 1375 (1997)

    Article  ADS  Google Scholar 

  16. Deutsch, A., Theraulaz, G., Vicsek, T.: Collective motion in biological systems. Interface Focus 2, 689 (2012)

    Article  Google Scholar 

  17. Ferrante, E., Turgut, A.E., Dorigo, M., Huepe, C.: Collective motion dynamics of active solids and active crystals. New J. Phys. 15(9), 095011 (2013)

    Article  ADS  Google Scholar 

  18. Ferrante, E., Turgut, A.E., Dorigo, M., Huepe, C.: Elasticity-based mechanism for the collective motion of self-propelled particles with springlike interactions: a model system for natural and artificial swarms. Phys. Rev. Lett. 111, 268302 (2013)

    Article  ADS  Google Scholar 

  19. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-organized flocking with a mobile robot swarm: a novel motion control method. Adapt. Behav. 20(6), 460–477 (2012)

    Article  Google Scholar 

  20. Fetter, A., Walecka, J.: Theoretical Mechanics of Particles and Continua. Dover Books on Physics Series. Dover, Mineola (2003)

    MATH  Google Scholar 

  21. Flierl, G., Grünbaum, D., Levin, S., Olson, D.: From individuals to aggregations: the interplay between behavior and physics. J. Theor. Biol. 196, 397–454 (1999)

    Article  Google Scholar 

  22. Gautrais, J., Ginelli, F., Fournier, R., Blanco, S., Soria, M., Chate, H., Theraulaz, G.: Deciphering interactions in moving animal groups. PLoS Comput. Biol. 8(9), e1002678 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  23. Gautrais, J., Jost, C., Soria, M., Campo, A., Motsch, S., Fournier, R., Blanco, S., Theraulaz, G.: Analyzing fish movement as a persistent turning walker. J. Math. Biol. 58(3), 429–445 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Grossman, D., Aranson, I.S., Jacob, E.B.: Emergence of agent swarm migration and vortex formation through inelastic collisions. New J. Phys. 10, 023036 (2008)

    Article  ADS  Google Scholar 

  25. Grunbaum, D., Okubo, A.: Modeling social animal aggregation. Frontiers in Theoretical Biology, Lecture notes in Biomathematics, vol. 100, pp. 296–325. Springer-Verlag, Berlin (1994)

    Google Scholar 

  26. Henkes, S., Fily, Y., Marchetti, M.C.: Active jamming: Self-propelled soft particles at high density. Phys. Rev. E 84(4), 040301(R) (2011)

    Article  ADS  Google Scholar 

  27. Katz, Y., Tunstrm, K., Ioannou, C.C., Huepe, C., Couzin, I.D.: Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci 108(46), 18720–18725 (2011)

    Article  ADS  Google Scholar 

  28. Kauffman, S.A.: The Origins of Order: Self-organization and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  29. Lewin, R.: Complexity: Life at the Edge of Chaos. Nature of Human Society Series. University of Chicago Press, Chicago (1999)

    Google Scholar 

  30. Lukeman, R., Li, Y.X., Edelstein-Keshet, L.: Inferring individual rules from collective behavior. Proc Natl Acad Sci 107(28), 12576–12580 (2010)

    Article  ADS  Google Scholar 

  31. Menzel, M.A., Takao, O.: Soft deformable self-propelled particles. Europhys. Lett. 99(5), 58001 (2012)

    Article  ADS  Google Scholar 

  32. Mora, T., Bialek, W.: Are biological systems poised at criticality? J. Stat. Phys. 144(2), 268–302 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Adv. Biophys. 22, 1–94 (1986)

    Article  Google Scholar 

  34. Romanczuk, P., Couzin, I.D., Schimansky-Geier, L.: Collective motion due to individual escape and pursuit response. New J. Phys. 102(1), 010602 (2009)

    Google Scholar 

  35. Sumpter, D.J.T.: Collective Animal Behavior. Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  36. Szabó, B., Szöllösi, G.J., Gönci, B., Selmeczi, Z.J.D., Vicsek, T.: Phase transition in the collective migration of tissue cells: experiment and model. Phys. Rev. E 74(6), 061908 (2006)

    Article  ADS  Google Scholar 

  37. Toner, J., Tu, Y.: Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys. Rev. Lett. 75, 4326–4329 (1995)

    Article  ADS  Google Scholar 

  38. Toner, J., Tu, Y.: Flocks, herds, and schools: a quantitative theory of flocking. Phys. Rev. E 58, 4828–4858 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  39. Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile robot swarms. Swarm Intell. 2(2), 97–120 (2008)

    Article  Google Scholar 

  40. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)

    Article  ADS  Google Scholar 

  41. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)

    Article  ADS  Google Scholar 

  42. Warburton, K., Lazarus, J.: Tendency-distance models of social cohesion in animal groups. J. Theor. Biol. 150(4), 473–488 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

The work of CH was supported by the National Science Foundation under Grant No. PHY-0848755. The work of EF, AT and TW was supported by the Research Foundation Flanders (Flemish Community of Belgium) and European Science Foundation (ESF) funded H2Swarm project as well as by the KU Leuven funded BioCo3 IDO Project. The work of AT was supported by the Scientific and Technological Council of Turkey (TUBITAK) 2219 Program. We also acknowledge support by the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany, through the Advanced Study Group “Statistical Physics of Collective Motion”, where part of this work was conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristián Huepe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huepe, C., Ferrante, E., Wenseleers, T. et al. Scale-Free Correlations in Flocking Systems with Position-Based Interactions. J Stat Phys 158, 549–562 (2015). https://doi.org/10.1007/s10955-014-1114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1114-8

Keywords

Navigation