Skip to main content
Log in

Schloegl’s Second Model for Autocatalysis on a Cubic Lattice: Mean-Field-Type Discrete Reaction-Diffusion Equation Analysis

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Schloegl’s second model for autocatalysis on a hypercubic lattice of dimension d≥2 involves: (i) spontaneous annihilation of particles at lattice sites with rate p; and (ii) autocatalytic creation of particles at vacant sites at a rate proportional to the number of diagonal pairs of particles on neighboring sites. Kinetic Monte Carlo simulations for a d=3 cubic lattice reveal a discontinuous transition from a populated state to a vacuum state as p increases above p=p e . However, stationary points, p=p eq (≤p e ), for planar interfaces separating these states depend on interface orientation. Our focus is on analysis of interface dynamics via discrete reaction-diffusion equations (dRDE’s) obtained from mean-field type approximations to the exact master equations for spatially inhomogeneous states. These dRDE can display propagation failure absent due to fluctuations in the stochastic model. However, accounting for this anomaly, dRDE analysis elucidates exact behavior with quantitative accuracy for higher-level approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marro, J., Dickman, R.: Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  2. Hinrichsen, H.: Adv. Phys. 49, 815 (2000)

    Article  ADS  Google Scholar 

  3. Odor, G.: Rev. Mod. Phys. 76, 663 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Ziff, R.M., Gulari, E., Barshad, Y.: Phys. Rev. Lett. 56, 2553 (1986)

    Article  ADS  Google Scholar 

  5. Evans, J.W., Miesch, M.S.: Phys. Rev. Lett. 66, 833 (1991)

    Article  ADS  Google Scholar 

  6. Loscar, E., Albano, E.V.: Rep. Prog. Phys. 66, 1343 (2003)

    Article  ADS  Google Scholar 

  7. Liu, D.-J., Guo, X., Evans, J.W.: Phys. Rev. Lett. 98, 050601 (2007)

    Article  ADS  Google Scholar 

  8. Evans, J.W., Ray, T.R.: Phys. Rev. E 50, 4302 (1994)

    Article  ADS  Google Scholar 

  9. Goodman, R.H., Graff, D.S., Sander, L.M., Leroux-Hugon, P., Clément, E.: Phys. Rev. E 52, 5904 (1995)

    Article  ADS  Google Scholar 

  10. Machado, E., Buendia, G.M., Rikvold, P.A.: Phys. Rev. E 71, 031603 (2005)

    Article  ADS  Google Scholar 

  11. Guo, X., Liu, D.-J., Evans, J.W.: J. Chem. Phys. 130, 074106 (2009)

    Article  ADS  Google Scholar 

  12. Toom, A.L.: In: Dobrushin, D.L., Sinai, Y.G. (eds.) Multicomponent Random Systems. Advances in Probability and Related Topics, vol. 6, pp. 549–575. Dekker, New York (1980), Chap. 18

    Google Scholar 

  13. Bennett, C.H., Grinstein, G.: Phys. Rev. Lett. 55, 657 (1985)

    Article  ADS  Google Scholar 

  14. Schloegl, F.: Z. Phys. 253, 147 (1972)

    Article  ADS  Google Scholar 

  15. Grassberger, P.: Z. Phys. B Condens. Matter 47, 365 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  16. Boon, J.P., Dab, D., Kapral, R., Lawniczak, A.: Rep. Mod. Phys. 273, 55 (1996)

    MathSciNet  Google Scholar 

  17. Prakash, S., Nicolis, G.: J. Stat. Phys. 86, 1289 (1997)

    Article  ADS  MATH  Google Scholar 

  18. Durrett, R.: SIAM Rev. 41, 677 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Guo, X., de Decker, Y., Evans, J.W.: Phys. Rev. E 82, 021121 (2010)

    Article  ADS  Google Scholar 

  20. Guo, X., Liu, D.-J., Evans, J.W.: Phys. Rev. E 75, 061129 (2007)

    Article  ADS  Google Scholar 

  21. Ziff, R.M., Brosilow, B.J.: Phys. Rev. A 46, 4630 (1992)

    Article  ADS  Google Scholar 

  22. Evans, J.W.: Rev. Mod. Phys. 65, 1281 (1993)

    Article  ADS  Google Scholar 

  23. Guo, X., Evans, J.W., Liu, D.-J.: Physica A 387, 177 (2008). Note the error in site labeling in the last two loss terms in (17): replace i with i−1

    Article  ADS  Google Scholar 

  24. Fischer, P., Titulaer, U.M.: Surf. Sci. 221, 409 (1989)

    Article  ADS  Google Scholar 

  25. De Decker, Y., Tsekouras, G.A., Provata, A., Erneux, Th., Nicolis, G.: Phys. Rev. E 69, 036203 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  26. Keener, J.P.: SIAM J. Appl. Math. 47, 556 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fath, G.: Physica D 116, 176 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Mikhailov, A.S.: Introduction to Synergetics. Springer, Berlin (1990)

    Google Scholar 

  29. Liu, D.-J.: J. Stat. Phys. 135, 77 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CJ., Guo, X., Liu, DJ. et al. Schloegl’s Second Model for Autocatalysis on a Cubic Lattice: Mean-Field-Type Discrete Reaction-Diffusion Equation Analysis. J Stat Phys 144, 1308 (2011). https://doi.org/10.1007/s10955-011-0288-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-011-0288-6

Keywords

Navigation