Skip to main content
Log in

Calibration of the Subdiffusive Arithmetic Brownian Motion with Tempered Stable Waiting-Times

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the classical analysis many models used to real data description are based on the standard Brownian diffusion-type processes. However, some real data exhibit characteristic periods of constant values. In such cases the popular systems seem not to be applicable. Therefore we propose an alternative approach, based on the combination of the popular Brownian motion with drift (called also the arithmetic Brownian motion) and tempered stable subordinator. The probability density function of the proposed model can be described by a Fokker-Planck type equation and therefore it has many similar properties as the popular Brownian motion with drift. In this paper we propose the estimation procedure for the considered tempered stable subdiffusive arithmetic Brownian motion and calibrate the analyzed process to the real financial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumer, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233, 2438–2448 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  2. Borak, S., Haerdle, W., Weron, R.: Stable distributions. In: Cizek, P., Haerdle, W., Weron, R. (eds.) Statistical Tools for Finance and Insurance. Springer, Berlin (2005)

    Google Scholar 

  3. Cadavid, A.C., Lawrence, J.K., Ruzmaikin, A.A.: Anomalous diffusion of solar magnetic elements. Astrophys. J. 521, 844–850 (1999)

    Article  ADS  Google Scholar 

  4. Caspi, A., Granek, R., Elbaum, M.: Enhanced diffusion in active intracellular transport. Phys. Rev. Lett. 85, 5655–5658 (2000)

    Article  ADS  Google Scholar 

  5. Coffey, W., Kalmykov, Y.P., Waldron, J.T.: The Langevin Equation. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  6. Chechkin, A.V., Gonchar, V.Yu., Klafter, J., Metzler, R.: Natural cutoff in Lévy flights caused by dissipative nonlinearity. Phys. Rev. E 72, 010101 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  7. Dubrulle, B., Laval, J.-Ph.: Truncated Levy laws and 2D turbulence. Eur. Phys. J. B 4, 143–146 (1998)

    Article  ADS  Google Scholar 

  8. Gajda, J., Magdziarz, M.: Fractional Fokker-Planck equation with tempered alpha-stable waiting times: Langevin picture and computer simulation. Phys. Rev. E 82, 011117 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  9. Golding, I., Cox, E.C.: Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098102 (2006)

    Article  ADS  Google Scholar 

  10. Gorenflo, R., Loutchko, J., Luchko, Yu.: Computation of the Mittag-Leffler function and its derivatives. Fract. Calc. Appl. Anal. 5(4), 491–518 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Hougaard, P.: A class of multivariate failure time distributions. Biometrika 73, 671–678 (1986)

    MathSciNet  MATH  Google Scholar 

  12. Janczura, J., Wyłomańska, A.: Subdynamics of financial data from fractional Fokker-Planck equation. Acta Phys. Pol. B 40(5), 1341–1351 (2009)

    ADS  Google Scholar 

  13. Janczura, J., Orzeł, S., Wyłomańska, A.: Subordinated α-stable Ornstein–Uhlenbeck process as a tool of financial data description (2011, submitted)

  14. Jha, R., Kaw, P.K., Kulkarni, D.R., Parikh, J.C., Team, A.: Evidence of Lévy stable process in tokamak edge turbulence. Phys. Plasmas 10, 699–704 (2003)

    Article  ADS  Google Scholar 

  15. Kim, Y.S., Rachev, S.T., Bianchi, M.L., Fabozzi, F.J.: A new tempered stable distribution and its application to finance. In: Bol, G., Rachev, S.T., Wuerth, R. (eds.) Risk Assessment: Decisions in Banking and Finance. Physika-Verlag/Springer, Heidelberg (2007)

    Google Scholar 

  16. Kim, Y.S., Chung, D.M., Rachev, S.T., Bianchi, M.L.: The modified tempered stable distribution, GARCH models and option pricing. Probab. Math. Stat. 29(1), 91–117 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Kou, S.C.: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat. 2, 501–535 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Magdziarz, M.: Langevin picture of subdiffusion with infinitely divisible waiting times. J. Stat. Phys. 135, 763–772 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Magdziarz, M., Weron, A., Weron, K.: Fractional Fokker-Planck dynamics: stochastic representation and computer simulation. Phys. Rev. E 75, 016708 (2007)

    Article  ADS  Google Scholar 

  20. Magdziarz, M., Orzeł, S., Weron, A.: Option pricing in subdiffusive model with infinitely divisible waiting times (2010, submitted)

  21. Meerschaert, M.M., Benson, D.A., Scheffler, H.P., Baeumer, B.: Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65, 041103 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  22. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep.-Rev. 339, 1–77 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Montroll, E.W., Weiss, G.H.: Random walks on lattices: II. J. Math. Phys. 6, 167–181 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  24. Orzeł, S., Weron, A.: Calibration of the subdiffusive Black-Scholes model. Acta Phys. Pol. B 41(5), 1051–1059 (2010)

    Google Scholar 

  25. Ott, A., Bouchaud, J.P., Langevin, D., Urbach, W.: Anomalous diffusion in “living polymers”: a genuine Levy flight? Phys. Rev. Lett. 65, 2201–2204 (1990)

    Article  ADS  Google Scholar 

  26. Pfister, G., Scher, H.: Dispersive (non-Gaussian) transient transport in disordered solids. Adv. Phys. 27, 747–798 (1978)

    Article  ADS  Google Scholar 

  27. Platani, M., Goldberg, I., Lamond, A.I., Swedow, J.R.: Cajal body dynamics and association with chromatin are ATP-dependent. Nat. Cell Biol. 4, 502–508 (2002)

    Article  Google Scholar 

  28. Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117, 677–707 (2007)

    Article  MATH  Google Scholar 

  29. Scher, H., Lax, M.: Stochastic transport in a disordered solid. I. Theory. Phys. Rev. B 7, 4491–4502 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  30. Scher, H., Montroll, E.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12, 2455–2477 (1975)

    Article  ADS  Google Scholar 

  31. Sokolov, I.M., Chechkin, A.V., Klafter, J.: Fractional diffusion equation for a power law-truncated Lévy process. Physica A 336, 245–251 (2004)

    Article  ADS  Google Scholar 

  32. Stanislavsky, A.A.: Fractional dynamics from the ordinary Langevin equation. Phys. Rev. E 67, 021111 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  33. Stanislavsky, A.A., Weron, K., Weron, A.: Diffusion and relaxation controlled by tempered α-stable processes. Phys. Rev. E 78, 051106 (2008)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Wyłomańska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orzeł, S., Wyłomańska, A. Calibration of the Subdiffusive Arithmetic Brownian Motion with Tempered Stable Waiting-Times. J Stat Phys 143, 447–454 (2011). https://doi.org/10.1007/s10955-011-0191-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0191-1

Keywords

Navigation