Skip to main content

Advertisement

Log in

Dynamic Scaling of Lipofuscin Deposition in Aging Cells

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Lipofuscin is a membrane-bound cellular waste that can be neither degraded nor ejected from the cell but can only be diluted through cell division and subsequent growth. The fate of postmitotic (non-dividing) cells such as neurons, cardiac myocytes, skeletal muscle fibers, and retinal pigment epithelial cells (RPE) is to accumulate lipofuscin, which as an “aging pigment” has been considered a reliable biomarker for the age of cells. Environmental stress can accelerate the accumulation of lipofuscin. For example, accumulation in brain cells appears to be an important issue connected with heavy consumption of alcohol. Lipofuscin is made of free-radical-damaged protein and fat, whose abnormal accumulation is related to a range of disorders including Type IV mucolipidosis (ML4), Amyotrophic Lateral Sclerosis (ALS), Alzheimer’s disease, Parkinson disease, and age-related macular degeneration (AMD) which is the leading cause of blindness beyond the age of 50 years. The study of lipofuscin formation and growth is important, because of their association with cellular aging. We introduce a model of non-equilibrium cluster growth and aggregation that we have developed for studying the formation and growth of lipofuscin. As an example of lipofuscin deposit in a given kind of postmitotic cell, we study the kinetics of lipofuscin growth in a RPE cell. Our results agree with a linear growth of the number of lipofuscin granules with age. We apply the dynamic scaling approach to our model and find excellent data collapse for the cluster size distribution. An unusual feature of our model is that while small particles are removed from the cell the larger ones become fixed and grow by aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (eds.): Molecular Biology of the Cell. Garland Science, New York (2002)

    Google Scholar 

  2. Barabási, A.L., Stanley, H.E.: Fractal Concepts and Surface Growth. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  3. Ben-Jacob, E.: Systems Biology: The Challenge of Complexity. Springer, Berlin (2009)

    Google Scholar 

  4. Berg, H.C.: Phys. Today 53, 24 (2000)

    Article  ADS  Google Scholar 

  5. Bindewald-Wittich, A., Han, M., Schmitz-Valckenberg, S., Snyder, S.R., Giese, G., Bille, J.F., Holz, F.G.: Investig. Ophthalmol. Vis. Sci. 47(10), 4553 (2006)

    Article  Google Scholar 

  6. Biscarini, F., Zamboni, R., Samori, P., Ostoja, P., Taliani, C.: Phys. Rev. B 52(20), 14868 (1995)

    Article  ADS  Google Scholar 

  7. Boulton, M., Marshall, J.: Br. J. Ophthalmol. 70(11), 808 (1986)

    Article  Google Scholar 

  8. Brinkmann, M., Biscarini, F., Taliani, C., Aiello, I., Ghedini, M.: Phys. Rev. B 61(24), R16339 (2000)

    Article  ADS  Google Scholar 

  9. Brunk, U.T., T.A.: Free Radic. Biol. Med. 33, 611 (2002)

    Article  Google Scholar 

  10. Brunk, U.T., T.A.: Eur. J. Biochem. 269, 1996 (2002)

    Article  Google Scholar 

  11. Cavallotti, C.A.P., Cerulli, L. (eds.): Age-Related Changes of the Human Eye. Humana Press, New York (2008)

    Google Scholar 

  12. Family, F., Landau, D.P. (eds.): Kinetics of Aggregation and Gelation. North-Holland, Amsterdam (1984)

    Google Scholar 

  13. Family, F., Vicsek, T.: Dynamics of Fractal Surfaces. Singapore, World Scientific (1991)

    MATH  Google Scholar 

  14. Feeney-Burns, L., Berman, E.R., Rothman, H.: Am. J. Ophthalmol. 90(6), 783 (1980)

    Google Scholar 

  15. Feher, J., Kovacs, I., Artico, M., Cavallotti, C., Papale, A., Gabrieli, C.B.: Neurobiol. Aging 27(7), 983 (2006)

    Article  Google Scholar 

  16. Finnemann, S.C., Leung, L.W., Rodriguez-Boulan, E.: Proc. Natl. Acad. Sci. USA 99(6), 3842 (2002)

    Article  ADS  Google Scholar 

  17. Friedlander, S.K.: Smoke, Dust and Haze: Fundamentals of Aerosol Behavior. Wiley, New York (1977)

    Google Scholar 

  18. Gray, D.A., Woulfe, J.: Sci. Aging Knowl. Environ. 2005(5), Re1 (2005)

    Article  Google Scholar 

  19. Hageman, G.S., Luthert, P.J., Chong, N.H.V., Johnson, L.V., Anderson, D.H., Mullins, R.F.: Prog. Retin. Eye Res. 20(6), 705 (2001)

    Article  Google Scholar 

  20. Hannover, A.: Kgl. Danske Vidensk. Kabernes Selskobs Naturv. Math. Afh. (Copenhagen) 10, 1 (1842)

    Google Scholar 

  21. Meyer zu Heringdorf, F.J., Reuter, M.C., Tromp, R.M.: Nature (London) 412(6846), 517 (2001)

    Article  ADS  Google Scholar 

  22. Herrmann, H.J., Helbing, D., Schreckenberg, M., Wolf, D.E. (eds.): Traffic and Granular Flow. Springer, Berlin (2000)

    MATH  Google Scholar 

  23. Hollyfield, J.G., Anderson, R.E., LaVail, M.M. (eds.): Retinal Degenerative Diseases, vol. 572. Springer, New York (2006)

    Google Scholar 

  24. Holtzman, E.: Lysosomes. Plenum, New York (1989)

    Google Scholar 

  25. Holz, F.G., Bellman, C., Staudt, S., Schutt, F., Volcker, H.E.: Investig. Ophthalmol. Vis. Sci. 42, 1051 (2001)

    Google Scholar 

  26. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Publishers Sunderland, Massachusetts (2001)

    Google Scholar 

  27. Huang, J.D., Curcio, C.A., Johnson, M.: Investig. Ophthalmol. Vis. Sci. 49(6), 2721 (2008)

    Article  Google Scholar 

  28. Koneff, H.: Mitt. d. Naturfors. Ges. Bern 44, 13 (1886)

    Google Scholar 

  29. Lakkaraju, A., Finnemann, S.C., Rodriguez-Boulan, E.: Proc. Natl. Acad. Sci. USA 104(26), 11026 (2007)

    Article  ADS  Google Scholar 

  30. Lim, J.I. (ed.): Age-Related Macular Degeneration. CRC Press, Boca Raton (2007)

    Google Scholar 

  31. Luby-Phelps, K., Castle, P.E., Taylor, D.L., Lanni, F.: Proc. Natl. Acad. Sci. USA 84, 4910 (1987)

    Article  ADS  Google Scholar 

  32. Marshall, J.: Eye-transactions of the ophthalmological societies of the United Kingdom 1, 282 (1987)

  33. Mazzitello, K.I., Arizmendi, C.M., Family, F., Grossniklaus, H.E.: Phys. Rev. E 80, 051908 (2009)

    Article  ADS  Google Scholar 

  34. Meakin, P.: Fractal, Scaling and Growth Far from Equilibrium. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  35. Merks, R.M.H., Perryn, E.D., Glazier, J.A.: PLoS Comput. Biol. 4(9), e1000163 (2008)

    Article  MathSciNet  Google Scholar 

  36. Munnel, J.F., Getty, R.: J. Gerontol. 23, 154 (1968)

    Google Scholar 

  37. Nakano, M., Gotoh, S.: J. Gerontol. B 47, 126 (1992)

    Google Scholar 

  38. Pimpenelli, A., Villain, J. (eds.): Physics of Crystal Growth. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  39. Rattner, A., Nathans, J.: Nat. Rev., Neurosci. 7(11), 860 (2006)

    Article  Google Scholar 

  40. Schmitz-Valckenberg, S., Holz, F.G., Bird, A.C., Spaide, R.F.: J. Ret. Vit. Dis. 28(3), 385 (2008)

    Google Scholar 

  41. Seiden, P.E., Schulman, L.S.: Adv. Phys. 39(1), 1 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  42. Sheehy, M.R., Greenwood, J.G., Fielder, D.R.: J. Gerontol. B 50, 327 (1995)

    Article  Google Scholar 

  43. Spaide, R.F., Armstrong, D., Browne, R.: Retina 23(5), 595 (2003)

    Article  Google Scholar 

  44. Sparrow, J.R., Vollmer-Snarr, H.R., Zhou, J.L., Jang, Y.P., Jockusch, S., Itagaki, Y., Nakanishi, K.: J. Biol. Chem. 278(20), 18207 (2003)

    Article  Google Scholar 

  45. Stanley, H.E., Family, F., Gould, H.: J. Polymer Sci. (73), 19 (1985)

  46. Strehler, B.L., Mark, D.D., Mildvan, A.S., Gee, M.V.: J. Gerontol. 14, 430 (1959)

    Google Scholar 

  47. Szweda, P.A., Camouse, M., Lundberg, K.C., Oberley, T.D., Szweda, L.I.: Ageing Research Rev. 2, 383 (2003)

    Article  Google Scholar 

  48. Terman, A., Brunk, U.T.: APMIS, Acta Pathol. Microbiol. Immunol. Scand. 106, 265 (1998)

    Google Scholar 

  49. Vicsek, T.: Fractal Growth Phenomena. World Scientific, Singapore (1992)

    MATH  Google Scholar 

  50. Vicsek, T., Family, F.: Phys. Rev. Lett. 52(19), 1669 (1984)

    Article  ADS  Google Scholar 

  51. Vicsek, T., Meakin, P., Family, F.: Phys. Rev. A 32(2), 1122 (1985)

    Article  ADS  Google Scholar 

  52. Viscsek, T. (ed.): Fluctuations and Scaling in Biology. Oxford University Press, Oxford (2001)

    Google Scholar 

  53. Wing, G.L., Blanchard, G.C., Weiter, J.J.: Investig. Ophthalmol. Vis. Sci. 17(7), 601 (1978)

    Google Scholar 

  54. Young, R.W., Bok, D.: J. Cell Biol. 42(2), 392 (1969)

    Article  Google Scholar 

  55. Zhang, Z.Y., Lagally, M.G.: Science 276(5311), 377 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Mazzitello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Family, F., Mazzitello, K.I., Arizmendi, C.M. et al. Dynamic Scaling of Lipofuscin Deposition in Aging Cells. J Stat Phys 144, 332–343 (2011). https://doi.org/10.1007/s10955-011-0178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0178-y

Keywords

Navigation