Skip to main content
Log in

Shift in Critical Temperature for Random Spatial Permutations with Cycle Weights

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We examine a phase transition in a model of random spatial permutations which originates in a study of the interacting Bose gas. Permutations are weighted according to point positions; the low-temperature onset of the appearance of arbitrarily long cycles is connected to the phase transition of Bose-Einstein condensates. In our simplified model, point positions are held fixed on the fully occupied cubic lattice and interactions are expressed as Ewens-type weights on cycle lengths of permutations. The critical temperature of the transition to long cycles depends on an interaction-strength parameter α. For weak interactions, the shift in critical temperature is expected to be linear in α with constant of linearity c. Using Markov chain Monte Carlo methods and finite-size scaling, we find c=0.618±0.086. This finding matches a similar analytical result of Ueltschi and Betz. We also examine the mean longest cycle length as a fraction of the number of sites in long cycles, recovering an earlier result of Shepp and Lloyd for non-spatial permutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baym, G., Blaizot, J.-P., Holzmann, M., Laloë, F., Vautherin, D.: Bose-Einstein transition in a dilute interacting gas. Eur. Phys. J. B 24, 107–124 (2001). arXiv:cond-mat/0107129v2

    Article  ADS  Google Scholar 

  2. Berg, B.: Markov Chain Monte Carlo Simulations and Their Statistical Analysis. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  3. Betz, V., Ueltschi, D.: Spatial random permutations and infinite cycles. Commun. Math. Phys. 285, 469–501 (2009). arXiv:0711.1188

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Betz, V., Ueltschi, D.: Spatial random permutations with small cycle weights. Probab. Theory Relat. Fields (2010). arXiv:0812.0569v1

  5. Boninsegni, M., Prokof’ev, N.V., Svistunov, B.V.: Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations. Phys. Rev. E 74, 036701 (2006)

    Article  ADS  Google Scholar 

  6. Caracciolo, S., Gambassi, A., Gubinelli, M., Pelisetto, A.: Finite-size scaling in the driven lattice gas. J. Stat. Phys. 115(1/2) (2004). arXiv:cond-mat/0312175

  7. Ewens, W.J.: The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972)

    Article  MathSciNet  Google Scholar 

  8. Feynman, R.P.: Atomic theory of the λ transition in helium. Phys. Rev. 91(6) (1953)

  9. Gandolfo, D., Ruiz, J., Ueltschi, D.: On a model of random cycles. Stat. Phys. 129, 663–676 (2007). arXiv:cond-mat/0703315

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Golomb, S.W.: Random permutations. Bull. Am. Math. Soc. 70, 747 (1964)

    Article  Google Scholar 

  11. Kerl, J.: Critical behavior for the model of random spatial permutations. Doctoral dissertation, University of Arizona (2010)

  12. Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics, 2nd edn. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  13. Penrose, O., Onsager, L.: Bose-Einstein condensation and liquid helium. Phys. Rev. 104(3) (1956)

  14. Pollock, E.L., Ceperley, D.M.: Path-integral computation of superfluid densities. Phys. Rev. B 36(16) (1987)

  15. Prokof’ev, N.V., Svistunov, B.V., Tupitsyn, I.S.: Exact, complete, and universal continuous-time worldline Monte Carlo approach to the statistics of discrete quantum systems. J. Exp. Theor. Phys. 87(2) (1998)

  16. Seiringer, R., Ueltschi, D.: Rigorous upper bound on the critical temperature of dilute Bose gases. Phys. Rev. B 80, 014502 (2009). arXiv:0904.0050

    Article  ADS  Google Scholar 

  17. Shepp, L.A., Lloyd, S.P.: Ordered cycle length in a random permutation. Trans. Am. Math. Soc. 121, 340–357 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sütő, A.: Percolation transition in the Bose gas. J. Phys. A, Math. Gen. 26, 4689–4710 (1993)

    Article  ADS  Google Scholar 

  19. Sütő, A.: Percolation transition in the Bose gas II. J. Phys. A, Math. Gen. 35, 6995–7002 (2002)

    Article  ADS  Google Scholar 

  20. Ueltschi, D.: The model of interacting spatial permutations and its relation to the Bose gas. In: Mathematical Results in Quantum Mechanics, pp. 225–272. World Scientific, Singapore (2008). arXiv:0712.2443v3

    Google Scholar 

  21. Young, H.D.: Statistical Treatment of Experimental Data. McGraw-Hill, New York (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kerl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerl, J. Shift in Critical Temperature for Random Spatial Permutations with Cycle Weights. J Stat Phys 140, 56–75 (2010). https://doi.org/10.1007/s10955-010-9988-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9988-6

Keywords

Navigation