Skip to main content
Log in

Adaptive Sub-sampling for Parametric Estimation of Gaussian Diffusions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a Gaussian diffusion X t (Ornstein-Uhlenbeck process) with drift coefficient γ and diffusion coefficient σ 2, and an approximating process \(Y^{\varepsilon}_{t}\) converging to X t in L 2 as ε→0. We study estimators \(\hat{\gamma}_{\varepsilon}\), \(\hat{\sigma}^{2}_{\varepsilon}\) which are asymptotically equivalent to the Maximum likelihood estimators of γ and σ 2, respectively. We assume that the estimators are based on the available N=N(ε) observations extracted by sub-sampling only from the approximating process \(Y^{\varepsilon}_{t}\) with time step Δ=Δ(ε). We characterize all such adaptive sub-sampling schemes for which \(\hat{\gamma}_{\varepsilon}\), \(\hat{\sigma}^{2}_{\varepsilon}\) are consistent and asymptotically efficient estimators of γ and σ 2 as ε→0. The favorable adaptive sub-sampling schemes are identified by the conditions ε→0, Δ→0, (Δ/ε)→∞, and NΔ→∞, which implies that we sample from the process \(Y^{\varepsilon}_{t}\) with a vanishing but coarse time step Δ(ε)≫ε. This study highlights the necessity to sub-sample at adequate rates when the observations are not generated by the underlying stochastic model whose parameters are being estimated. The adequate sub-sampling rates we identify seem to retain their validity in much wider contexts such as the additive triad application we briefly outline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alperovich, T., Sopasakis, A.: Modeling highway traffic with stochastic dynamics. J. Stat. Phys 133, 1083–1105 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Azencott, R., Dacunha-Castelle, D.: Series of Irregular Observations: Forecasting and Model Building. Springer, Berlin (1986)

    MATH  Google Scholar 

  3. Chorin, A.J., Kast, A.P., Kupferman, R.: Unresolved computation and optimal prediction. Commun. Pure Appl. Math. 52, 1231–1254 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chorin, A.J., Hald, O.H., Kupferman, R.: Optimal prediction and the Mori-Zwanzig representation of irreversible processes. Proc. Natl. Acad. Sci. USA 97, 2968–2973 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Chorin, A.J., Hald, O.H., Kupferman, R.: Optimal prediction with memory. Physica D 166, 239–257 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Crommelin, D., Vanden-Eijnden, E.: Subgrid-scale parameterization with conditional Markov chains. J. Atmos. Sci. 65, 2661–2675 (2008)

    Article  Google Scholar 

  7. DelSole, T.: A fundamental limitation of Markov models. J. Atmos. Sci. 57, 2158–2168 (2000)

    Article  ADS  Google Scholar 

  8. Horenko, I., Dittmer, E., Fischer, A., Schutte, C.: Automated model reduction for complex systems exhibiting metastability. Multiscale Model. Simul. 5(3), 802–827 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Katsoulakis, M., Majda, A., Sopasakis, A.: Multiscale couplings in prototype hybrid deterministic/stochastic systems: Part 1, deterministic closures. Commun. Math. Sci. 2, 255–294 (2004)

    MATH  MathSciNet  Google Scholar 

  10. Katsoulakis, M., Majda, A., Sopasakis, A.: Multiscale couplings in prototype hybrid deterministic/stochastic systems: Part 2, stochastic closures. Commun. Math. Sci. 3, 453–478 (2005)

    MATH  MathSciNet  Google Scholar 

  11. Katsoulakis, M., Majda, A., Sopasakis, A.: Intermittency, metastability and coarse graining for coupled deterministic-stochastic lattice systems. Nonlinearity 19, 1–27 (2006)

    Article  MathSciNet  Google Scholar 

  12. Majda, A.J., Timofeyev, I., Vanden-Eijnden, E.: A mathematics framework for stochastic climate models. Commun. Pure Appl. Math. 54, 891–974 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Majda, A.J., Timofeyev, I., Vanden-Eijnden, E.: A priori tests of a stochastic mode reduction strategy. Physica D 170, 206–252 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Majda, A.J., Timofeyev, I., Vanden-Eijnden, E.: Stochastic models for selected slow variables in large deterministic systems. Nonlinearity 19(4), 769–794 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Papavasiliou, A., Pavliotis, G.A., Stuart, A.: Maximum likelihood drift estimation for multiscale diffusions. Stoch. Process. Appl. 119, 3173–3210 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pavliotis, G.A., Stuart, A.: Parameter estimation for multiscale diffusions. J. Stat. Phys. 127, 741–781 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Schutte, C., Walter, J., Hartmann, C., Huisinga, W.: An averaging principle for fast degrees of freedom exhibiting long-term correlations. Multiscale Model. Simul. 2(3), 501–526 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Timofeyev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azencott, R., Beri, A. & Timofeyev, I. Adaptive Sub-sampling for Parametric Estimation of Gaussian Diffusions. J Stat Phys 139, 1066–1089 (2010). https://doi.org/10.1007/s10955-010-9975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9975-y

Keywords

Navigation