Skip to main content
Log in

Diffusive Limit of the Two-Band k⋅p Model for Semiconductors

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We derive semiclassical diffusive equations for the densities of electrons in the two energy bands of a semiconductor, as described by a k⋅p Hamiltonian. The derivation starts from a quantum kinetic (Wigner) description and resorts to the Chapman-Enskog method as well as to the quantum version of the minimum entropy principle. Four different regimes are investigated, according to different scalings of the k⋅p band-coupling and band-gap parameters with respect to the scaled Planck constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, A.: Self-consistent relaxation-time models in quantum mechanics. Commun. Partial Differ. Equ. 21(3–4), 473–506 (1996)

    Article  MATH  Google Scholar 

  2. Barletti, L., Demeio, L., Frosali, G.: Multiband quantum transport models for semiconductor devices. In: Cercignani, C., Gabetta, E. (eds.) Transport Phenomena and Kinetic Theory. Model. Simul. Sci. Eng. Technol., pp. 55–89. Birkhäuser, Boston (2007)

    Chapter  Google Scholar 

  3. Barletti, L., Méhats, F.: Quantum drift-diffusion modeling of spin transport in nanostructures. J. Math. Phys. (in press)

  4. Ben Abdallah, N., Méhats, F., Negulescu, C.: Adiabatic quantum-fluid transport models. Commun. Math. Sci. 4(3), 621–650 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden variables” I. Phys. Rev. 85, 166–179 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden variables” II. Phys. Rev. 85, 180–193 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bonilla, L.L., Barletti, L., Alvaro, M.: Nonlinear electron and spin transport in semiconductor superlattices. SIAM J. Appl. Math. 69(2), 494–513 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bourgade, J.P., Degond, P., Méhats, F., Ringhofer, C.: On quantum extensions to classical spherical harmonics expansion/Fokker-Planck models. J. Math. Phys. 47(4), 043302 (2006), 26 pp.

    Article  MathSciNet  ADS  Google Scholar 

  9. Degond, P., Gallego, S., Méhats, F.: An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes. J. Comput. Phys. 221(1), 226–249 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Degond, P., Gallego, S., Méhats, F.: Isothermal quantum hydrodynamics: derivation, asymptotic analysis, and simulation. Multiscale Model. Simul. 6(1), 246–272 (2007) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  11. Degond, P., Gallego, S., Méhats, F.: On quantum hydrodynamic and quantum energy transport models. Commun. Math. Sci. 5(4), 887–908 (2007)

    MATH  MathSciNet  Google Scholar 

  12. Degond, P., Méhats, F., Ringhofer, C.: Quantum energy-transport and drift-diffusion models. J. Stat. Phys. 118(3–4), 625–667 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Degond, P., Ringhofer, C.: Quantum moment hydrodynamics and the entropy principle. J. Stat. Phys. 112(3–4), 587–628 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  15. Freitag, M.: Graphene: Nanoelectronics goes flat out. Nat. Nanotechnol. 3, 455–457 (2008)

    Article  ADS  Google Scholar 

  16. Gardner, C.L.: The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54(2), 409–427 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Gasser, I., Markowich, P.A.: Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptot. Anal. 14(2), 97–116 (1997)

    MATH  MathSciNet  Google Scholar 

  18. Gasser, I., Markowich, P.A., Unterreiter, A.: Quantum hydrodynamics. In: Raviart, P.A. (ed.) Modeling of Collisions, pp. 179–216. Gauthier-Villars, Paris (1997)

    Google Scholar 

  19. Jüngel, A.: Quasi-Hydrodynamic Semiconductor Equations. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  20. Jüngel, A., Matthes, D.: A derivation of the isothermal quantum hydrodynamic equations using entropy minimization. ZAMM Z. Angew. Math. Mech. 85(11), 806–814 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jüngel, A., Matthes, D., Milišić, J.P.: Derivation of new quantum hydrodynamic equations using entropy minimization. SIAM J. Appl. Math. 67(1), 46–68 (2006) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kane, E.O.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181–188 (1959)

    Article  ADS  Google Scholar 

  23. Kane, E.O.: The k⋅p method. In: Willardson, R.K., Beer, A.C. (eds.) Physics of III–V Compounds, Semiconductors and Semimetals, vol. 1. Academic Press, New York (1966). Chap. 3

    Google Scholar 

  24. Katsnelson, M.I., Novoselov, K.S., Geim, A.K.: Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2(9), 620–625 (2006)

    Article  Google Scholar 

  25. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5–6), 1021–1065 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Phys. 40, 322–326 (1926)

    ADS  Google Scholar 

  27. Mascali, G., Romano, V.: Hydrodynamic subband model for semiconductors based on the maximum entropy principle. Preprint (2009)

  28. Nier, F.: A variational formulation of Schrödinger-Poisson systems in dimension d≤3. Commun. Partial Differ. Equ. 18(7–8), 1125–1147 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, London (1992)

    MATH  Google Scholar 

  30. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs (1967)

    Google Scholar 

  31. Sweeney, M., Xu, J.M.: Resonant interband tunnel diodes. Appl. Phys. Lett. 54(6), 546–548 (1989)

    Article  ADS  Google Scholar 

  32. Tatarskiĭ, V.I.: The Wigner representation of quantum mechanics. Sov. Phys. Usp. 26(4), 311–327 (1983)

    Article  ADS  Google Scholar 

  33. Thaller, B.: The Dirac Equation. Springer, Berlin (1992)

    Google Scholar 

  34. Vasko, F.T., Raichev, O.E.: Quantum Kinetic Theory and Applications. Electrons, Photons, Phonons. Springer, New York (2005)

    MATH  Google Scholar 

  35. Wenckebach, T.: Essentials of Semiconductor Physics. Wiley, Chichester (1999)

    Google Scholar 

  36. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  MATH  ADS  Google Scholar 

  37. Yang, R.Q., Sweeny, M., Day, D., Xu, J.M.: Interband tunneling in heterostructure tunnel diodes. IEEE Trans. Electron Devices 38(3), 442–446 (1991)

    Article  ADS  Google Scholar 

  38. Young, A.F., Kim, P.: Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5(3), 222–226 (2009)

    Article  Google Scholar 

  39. Zachos, C.K., Fairlie, D.B., Curtright, T.L. (eds.): Quantum Mechanics in Phase Space. World Scientific Series in 20th Century Physics, vol. 34. World Scientific, Hackensack (2005). An overview with selected papers

    MATH  Google Scholar 

  40. Žutić, I., Fabian, J., Das Sarma, S.: Spin-polarized transport in inhomogeneous magnetic semiconductors: Theory of magnetic/nonmagnetic p-n junctions. Phys. Rev. Lett. 88(6), 066603 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Barletti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barletti, L., Frosali, G. Diffusive Limit of the Two-Band k⋅p Model for Semiconductors. J Stat Phys 139, 280–306 (2010). https://doi.org/10.1007/s10955-010-9940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9940-9

Keywords

Navigation