Skip to main content
Log in

Entropy and Nonlinear Nonequilibrium Thermodynamic Relation for Heat Conducting Steady States

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Among various possible routes to extend entropy and thermodynamics to nonequilibrium steady states (NESS), we take the one which is guided by operational thermodynamics and the Clausius relation. In our previous study, we derived the extended Clausius relation for NESS, where the heat in the original relation is replaced by its “renormalized” counterpart called the excess heat, and the Gibbs-Shannon expression for the entropy by a new symmetrized Gibbs-Shannon-like expression. Here we concentrate on Markov processes describing heat conducting systems, and develop a new method for deriving thermodynamic relations. We first present a new simpler derivation of the extended Clausius relation, and clarify its close relation with the linear response theory. We then derive a new improved extended Clausius relation with a “nonlinear nonequilibrium” contribution which is written as a correlation between work and heat. We argue that the “nonlinear nonequilibrium” contribution is unavoidable, and is determined uniquely once we accept the (very natural) definition of the excess heat. Moreover it turns out that to operationally determine the difference in the nonequilibrium entropy to the second order in the temperature difference, one may only use the previous Clausius relation without a nonlinear term or must use the new relation, depending on the operation (i.e., the path in the parameter space). This peculiar “twist” may be a clue to a better understanding of thermodynamics and statistical mechanics of NESS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oono, Y., Paniconi, M.: Prog. Theor. Phys. Suppl. 130, 29 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  2. Derrida, B., Lebowitz, J.L., Speer, E.R.: Phys. Rev. Lett. 87, 150601 (2001). arXiv:cond-mat/0105110

    Article  MathSciNet  ADS  Google Scholar 

  3. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Phys. Rev. Lett. 87, 040601 (2001). arXiv:cond-mat/0104153

    Article  MathSciNet  ADS  Google Scholar 

  4. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: J. Stat. Phys. 135, 857 (2009). arXiv:0807.4457v2

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Jona-Lasinio, G.: Prog. Theor. Phys. Suppl. 184, 262 (2010). arXiv:1003.4164

    Article  MATH  ADS  Google Scholar 

  6. Bodineau, T., Derrida, B.: Phys. Rev. Lett. 92, 180601 (2004). arXiv:cond-mat/0402305

    Article  ADS  Google Scholar 

  7. Komatsu, T.S., Nakagawa, N., Sasa, S., Tasaki, H.: Phys. Rev. Lett. 100, 230602 (2008). arXiv:0711.0246

    Article  ADS  Google Scholar 

  8. Landauer, R.: Phys. Rev. A 18, 255 (1978)

    Article  ADS  Google Scholar 

  9. Ruelle, D.: Proc. Natl. Acad. Sci. USA 100, 3054 (2003). arXiv:cond-mat/0303156

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Lebowitz, J.L., Frisch, H.L.: Phys. Rev. 107, 917 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Bergmann, P.G., Lebowitz, J.L.: Phys. Rev. 99, 578 (1955)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Komatsu, T.S., Nakagawa, N., Sasa, S., Tasaki, H., Ito, N.: Prog. Theor. Phys. Suppl. 184, 329 (2010)

    Article  MATH  ADS  Google Scholar 

  13. Komatsu, T.S., Nakagawa, N.: Phys. Rev. Lett. 100, 030601 (2008). arXiv:0708.3158

    Article  ADS  Google Scholar 

  14. Komatsu, T.S., Nakagawa, N., Sasa, S., Tasaki, H.: J. Stat. Phys. 134, 401 (2009). arXiv:0805.3023

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Komatsu, T.S., Nakagawa, N., Sasa, S., Tasaki, H.: Preprint (in preparation)

  16. Komatsu, T.S., Nakagawa, N., Ito, N.: in preparation

  17. Saito, K., Tasaki, H.: in preparation

  18. Jarzynski, C.: Phys. Rev. Lett. 78, 2690 (1997). arXiv:cond-mat/9610209

    Article  ADS  Google Scholar 

  19. Maes, C., Netocny, K.: J. Math. Phys. 51, 015219 (2010). arXiv:0911.1032

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komatsu, T.S., Nakagawa, N., Sasa, Si. et al. Entropy and Nonlinear Nonequilibrium Thermodynamic Relation for Heat Conducting Steady States. J Stat Phys 142, 127–153 (2011). https://doi.org/10.1007/s10955-010-0095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0095-5

Keywords

Navigation