Skip to main content
Log in

Bootstrap Percolation in Living Neural Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Recent experimental studies of living neural networks reveal that their global activation induced by electrical stimulation can be explained using the concept of bootstrap percolation on a directed random network. The experiment consists in activating externally an initial random fraction of the neurons and observe the process of firing until its equilibrium. The final portion of neurons that are active depends in a non linear way on the initial fraction. The main result of this paper is a theorem which enables us to find the final proportion of the fired neurons, in the asymptotic case, in the case of random directed graphs with given node degrees as the model for interacting network. This gives a rigorous mathematical proof of a phenomena observed by physicists in neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D., Bandyopadhyay, A.: A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15, 1047–1110 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldous, D., Lyons, R.: Processes on unimodular random networks. Electron. J. Probab. 12, 1454–1508 (2007)

    MATH  MathSciNet  Google Scholar 

  3. Amini, H.: Bootstrap percolation and diffusion in random graphs with given vertex degrees. Electron. J. Comb. 17, R25 (2010)

    MathSciNet  ADS  Google Scholar 

  4. Balogh, J., Peres, Y., Pete, G.: Bootstrap percolation on infinite trees and non-amenable groups. Comb. Probab. Comput. 15, 715–730 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Random Structures & Algorithms 30, 257–286 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertoin, J., Sidoravicius, V.: The structure of typical clusters in large sparse random configurations. J. Stat. Phys. 135, 87–105 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  8. Breskin, I., Soriano, J., Moses, E., Tlusty, T.: Percolation in living neural networks. Phys. Rev. Lett. 97, 188102 (2006)

    Article  ADS  Google Scholar 

  9. Cain, J., Wormald, N.: Encores on cores. Electron. J. Comb. 13, R81 (2006)

    MathSciNet  Google Scholar 

  10. Cohen, O., Kesselman, A., Martinez, M.R., Soriano, J., Moses, E., Tlusty, T.: Quorum percolation in living neural networks. Europhys. Lett. 89, 18008 (2010)

    Article  ADS  Google Scholar 

  11. Cooper, C., Frieze, A.M.: The size of the largest strongly connected component of a random digraph with a given degree sequence. Comb. Probab. Comput. 13, 319–337 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eckmann, J.P., Feinerman, O., Gruendlinger, L., Moses, E., Soriano, J., Tlusty, T.: The physics of living neural networks. Phys. Rep. 449, 54–76 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  13. van Enter, A.C.D.: Proof of Straley’s argument for bootstrap percolation. J. Stat. Phys. 48, 943–945 (1987)

    Article  MATH  ADS  Google Scholar 

  14. Fontes, L.R.G., Schonmann, R.H.: Bootstrap percolation on homogeneous trees has 2 phase transitions. J. Stat. Phys. 132, 839–861 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Goltsev, A.V., Dorogovtsev, S.N., Mendes, J.F.F.: k-core (bootstrap) percolation on complex networks: critical phenomena and nonlocal effects. Phys. Rev. E 73, 056101 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  16. Holroyd, A.: The metastability threshold for modified bootstrap percolation in d dimensions. Electron. J. Probab. 11, 418–433 (2006)

    MathSciNet  Google Scholar 

  17. Janson, S.: The probability that a random multigraph is simple. Ann. Appl. Probab. 18, 205–225 (2008)

    Google Scholar 

  18. Molloy, M., Reed, B.: The size of the giant component of a random graph with a given degree sequence. Comb. Probab. Comput. 7, 295–305 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Article  ADS  Google Scholar 

  20. Schwab, D.J., Bruinsma, R.F., Levine, A.J.: Rhythmogenic neuronal networks, pacemakers, and k-cores. Phys. Rev. Lett. (2008)

  21. Soriano, J., Martínez, M.R., Tlusty, T., Moses, E.: Development of input connections in neural cultures, Proc. Nat. Acad. Sci. (2008)

  22. Tlusty, T., Eckmann, J.-P.: Remarks on bootstrap percolation in metric networks. J. Phys. A, Math. Theor. 42, 205004 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  23. Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. 99, 5766–5771 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Wormald, N.: Differential equations for random processes and random graphs. Ann. Appl. Probab. 5, 1217–1235 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wormald, N.: The differential equation method for random graph processes and greedy algorithms. Lect. Approx. Random. Algorithms (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Amini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amini, H. Bootstrap Percolation in Living Neural Networks. J Stat Phys 141, 459–475 (2010). https://doi.org/10.1007/s10955-010-0056-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0056-z

Keywords

Navigation