Skip to main content
Log in

Tunneling and Metastability of Continuous Time Markov Chains

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose a definition of tunneling and of metastability for a continuous time Markov process on countable state spaces. We obtain sufficient conditions for a irreducible positive recurrent Markov process to exhibit a tunneling behaviour. In the reversible case these conditions can be expressed in terms of the capacities and of the stationary measure of the Markov process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armendariz, I., Loulakis, M.: Thermodynamic limit for the invariant measures in supercritical zero range processes. Preprint (2008)

  2. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  3. Beltrán, J., Landim, C.: Metastability of reversible condensed zero-range processes on finite graphs. Preprint (2009)

  4. Bovier, A.: Metastability: a potential theoretic approach. In: International Congress of Mathematicians, vol. III, pp. 499–518. Eur. Math. Soc., Zürich (2006)

    Google Scholar 

  5. Bovier, A., Manzo, F.: Metastability in Glauber dynamics in the low-temperature limit: beyond exponential asymptotics. J. Stat. Phys. 107, 757–779 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in stochastic dynamics of disordered mean field models. Probab. Theory Relat. Fields 119, 99–161 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability and low lying spectra in reversible Markov chains. Commun. Math. Phys. 228, 219–255 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Cassandro, M., Galves, A., Olivieri, E., Vares, M.E.: Metastable behavior of stochastic dynamics: a pathwise approach. J. Stat. Phys. 35, 603–634 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Chung, K.L.: Markov Chains with Stationary Transition Probabilities. 2nd edn. Die Grundlehren der mathematischen Wissenschaften, Band vol. 104. Springer, New York (1967)

    Google Scholar 

  10. Evans, M.R.: Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30, 42–47 (2000)

    Article  ADS  Google Scholar 

  11. Evans, M.R., Majumdar, S.N., Zia, R.K.P.: Canonical analysis of condensation in factorized steady states. J. Stat. Phys. 123, 357–390 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Ferrari, P.A., Landim, C., Sisko, V.V.: Condensation for a fixed number of independent random variables. J. Stat. Phys. 128, 1153–1158 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Freedman, D.: Markov Chains. Holden-Day, San Francisco (1971)

    MATH  Google Scholar 

  14. Gaudillière, A.: Condenser physics applied to Markov chains: a brief introduction to potential theory. Online available at http://arxiv.org/abs/0901.3053

  15. Gaudillière, A., Den Hollander, F., Nardi, F.R., Olivieri, E., Scoppola, E.: Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics. Stoch. Process. Appl. 119, 737–774 (2009)

    Article  MATH  Google Scholar 

  16. Gaudillière, A., Den Hollander, F., Nardi, F.R., Olivieri, E., Scoppola, E.: Homogeneous nucleation for two-dimensional Kawasaki dynamics (2010, to appear)

  17. Den Hollander, F., Olivieri, E., Scoppola, E.: Metastability and nucleation for conservative dynamics. J. Math. Phys. 41, 1424–1498 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Den Hollander, F., Nardi, F.R., Olivieri, E., Scoppola, E.: Droplet growth for three-dimensional Kawasaki dynamics. Probab. Theory Relat. Fields 125, 153–194 (2003)

    Article  MATH  Google Scholar 

  19. Großkinsky, S., Schütz, G.M., Spohn, H.: Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys. 113, 389–410 (2003)

    Article  MATH  Google Scholar 

  20. Jeon, I., March, P., Pittel, B.: Size of the largest cluster under zero-range invariant measures. Ann. Probab. 28, 1162–1194 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kipnis, C., Landim, C.: Scaling limits of interacting particle systems. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 320. Springer, Berlin (1999)

    Google Scholar 

  22. Lebowitz, J.L., Penrose, O.: Rigorous treatment of the van der Waals–Maxwell theory of the liquid–vapor transition. J. Math. Phys. 7, 98–113 (1966)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Neves, E.J., Schonmann, R.H.: Critical droplets and metastability for a Glauber dynamics at very low temperatures. Commun. Math. Phys. 137, 209–230 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Neves, E.J., Schonmann, R.H.: Behavior of droplets for a class of Glauber dynamics at very low temperature. Probab. Theory Relat. Fields 91, 331–354 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  26. Olivieri, E., Vares, M.E.: Large deviations and metastability. In: Encyclopedia of Mathematics and its Applications, vol. 100. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  27. Schonmann, R.H.: Metastability for the contact process. J. Stat. Phys. 41, 445–464 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Scoppola, E.: Renormalization group for Markov chains and application to metastability. J. Stat. Phys. 73, 83–121 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Landim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltrán, J., Landim, C. Tunneling and Metastability of Continuous Time Markov Chains. J Stat Phys 140, 1065–1114 (2010). https://doi.org/10.1007/s10955-010-0030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0030-9

Keywords

Navigation