Skip to main content
Log in

Stabilization of Solutions to a FitzHugh-Nagumo Type System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a bistable reaction-diffusion system arising in the theory of phase transitions; it appears in several physical contexts such as thin magnetic films and the microphase separation in diblock copolymer melts. Mathematically it takes the form of an Allen-Cahn equation coupled to an elliptic equation. This system possesses a Lyapunov functional which represents the Gibbs free energy of the phase separation problem. We study the large time behavior of the solution orbits, and use the fact that the problem has a gradient structure to prove their stabilization by means of a version of Łojasiewicz inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 67, 3176–3193 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brochet, D., Hilhorst, D., Chen, X.-F.: Finite-dimensional exponential attractor for the phase field model. Appl. Anal. 49, 197–212 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chill, R.: The Lojasiewicz-Simon gradient inequality on Hilbert spaces. In: Jendoubi, M.A. (ed.) Proceedings of the 5th European-Maghrebian Workshop on Semigroup Theory, Evolution Equations, and Applications, pp. 25–36 (2006)

  4. Colli, P., Hilhorst, D., Issard-Roch, F., Schimperna, G.: Long time convergence for a class of variational phase-field models. Discrete Cont. Dyn. Syst. A 25, 63–81 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Feireisl, E., Takàč, P.: Long-time stabilization of solutions to the Ginzburg-Landau equations of superconductivity. Monatsh. Math. 133, 197–221 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Feireisl, E., Issard-Roch, F., Petzeltova, H.: A non-smooth version of the Lojasiewicz-Simon theorem with applications to non-local phase-field systems. J. Differ. Equ. 199, 1–21 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feireisl, E., Schimperna, G.: Large time behavior of solutions to Penrose-Fife phase change models. Math. Methods Appl. Sci. 28, 2117–2132 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. FitzHugh, R.: Mathematical models of excitation and propagation in nerve. In: Schwan, H.P. (ed.) Biological Engineering, pp. 1–85. McGraw-Hill, New York (1969), Chap. 1

    Google Scholar 

  9. Garel, T., Doniach, S.: Phase transitions with spontaneous modulation—the dipolar Ising ferromagnet. Phys. Rev. B 26, 325–329 (1982)

    Article  ADS  Google Scholar 

  10. Grinfeld, M., Novick-Cohen, A.: Counting stationary solutions of the Cahn-Hilliard equation by transversality argument. Proc. R. Soc. Edinb. Sect. A 125, 351–370 (1995)

    MATH  MathSciNet  Google Scholar 

  11. Hale, J.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)

    MATH  Google Scholar 

  12. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)

    MATH  Google Scholar 

  13. Łojasiewicz, S.: Ensemble Semi-Analytic. I.H.E.S., Bures-sur-Yvette (1965)

    Google Scholar 

  14. Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques reéls. In: Colloque Internationaux du C.N.R.S. No. 117: Les equations aux derivées partielles, pp. 87–89 (1963)

  15. Łojasiewicz, S.: Sur la geometrie semi- et sous-analytique. Ann. Inst. Fourier (Grenoble) 43, 1575–1595 (1993)

    MATH  MathSciNet  Google Scholar 

  16. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  17. Nishiura, Y., Ohnishi, I.: Some mathematical aspects of the micro-phase separation in diblock copolymers. Physica D 84, 31–39 (1995)

    Article  MathSciNet  Google Scholar 

  18. Ohta, T., Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19, 2621–2632 (1986)

    Article  ADS  Google Scholar 

  19. Rybka, P., Hoffmann, K.-H.: Convergence of solutions to Cahn-Hilliard equation. Commun. PDE 24, 1055–1077 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Simon, L.: Asymptotics for a class of non-linear evolution equations, with applications to geometric problems. Ann. Math. 118, 525–571 (1983)

    Article  Google Scholar 

  21. Shoji, H., Yamada, K., Ohta, T.: Interconnected Turing patterns in three dimensions. Phys. Rev. E 72, 065202 (2005)

    Article  ADS  Google Scholar 

  22. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam/New York (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Hilhorst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilhorst, D., Rybka, P. Stabilization of Solutions to a FitzHugh-Nagumo Type System. J Stat Phys 138, 291–304 (2010). https://doi.org/10.1007/s10955-009-9886-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9886-y

Navigation