Skip to main content
Log in

Numerical Computations for the Schramm-Loewner Evolution

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We review two numerical methods related to the Schramm-Loewner evolution (SLE). The first simulates SLE itself. More generally, it finds the curve in the half-plane that results from the Loewner equation for a given driving function. The second method can be thought of as the inverse problem. Given a simple curve in the half-plane it computes the driving function in the Loewner equation. This algorithm can be used to test if a given random family of curves in the half-plane is SLE by computing the driving process for the curves and testing if it is Brownian motion. More generally, this algorithm can be used to compute the driving process for random curves that may not be SLE. Most of the material presented here has appeared before. Our goal is to give a pedagogic review, illustrate some of the practical issues that arise in these computations and discuss some open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amoruso, C., Hartman, A.K., Hastings, M.B., Moore, M.A.: Conformal invariance and SLE in two-dimensional Ising spin glasses. Phys. Rev. Lett. 97, 267202 (2006). Archived as arXiv:cond-mat/0601711

    Article  ADS  Google Scholar 

  2. Bauer, R.: Discrete Loewner evolution. Ann. Fac. Sci. XII, 433–451 (2003). Archived as arXiv:math.PR/0303119

    ADS  Google Scholar 

  3. Bauer, M., Bernard, D.: 2D growth processes: SLE and Loewner chains. Phys. Rep. 432, 115–221 (2006). Archived as arXiv:math-ph/0602049

    Article  MathSciNet  ADS  Google Scholar 

  4. Bauer, M., Bernard, D., Kytölä, K.: LERW as an example of off-critical SLE’s. Archived as arXiv:0712.1952

  5. Bernard, D., Boffetta, G., Celani, A., Falkovich, G.: Conformal invariance in two-dimensional turbulence. Nat. Phys. 2, 124 (2006). Archived as arXiv:nlin.CD/0602017

    Article  Google Scholar 

  6. Bernard, D., Boffetta, G., Celani, A., Falkovich, G.: Inverse turbulent cascades and conformally invariant curves. Archived as arXiv:nlin.CD/0609069

  7. Bernard, D., Le Doussal, P., Middleton, A.A.: Are domain walls in 2D spin glasses described by stochastic Loewner evolutions? Phys. Rev. B 76, 020403(R) (2007). Archived as arXiv:cond-mat/0611433

    Article  ADS  Google Scholar 

  8. Camia, F., Fontes, L., Newman, C.: The scaling limit geometry of near-critical 2d percolation. Archived as arXiv:cond-mat/0510740

  9. Cardy, J.: SLE for Theoretical Physicists. Ann. Phys. 318, 81–118 (2005). Archived as arXiv:cond-mat/0503313

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Driscoll, T., Trefethen, L.: Schwarz-Christoffel Mapping. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  11. Kager, W., Nienhuis, B.: A guide to stochastic Loewner evolution and its applications. J. Stat. Phys. 115, 1149–1229 (2004). Archived as arXiv:math-ph/0312056

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Kennedy, T.: A fast algorithm for simulating the chordal Schramm-Loewner evolution. J. Stat. Phys. 128, 1125–1137 (2007). Archived as arXiv:math.PR/0508002

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Kennedy, T.: Computing the Loewner driving process of random curves in the half plane. J. Stat. Phys. 131, 803–819 (2008). Archived as arXiv:math/0702071

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Kühnau, R.: Numerische Realisierung konformer Abbildungen durch “Interpolation”. Z. Angew. Math. Mech. 63, 631–637 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lawler, G.: Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs, vol. 114. Am. Math. Soc., Providence (2005)

    MATH  Google Scholar 

  16. Marshall, D.E., Rohde, S.: Convergence of a variant of the Zipper algorithm for conformal mapping. SIAM J. Numer. Anal. 45, 2577–2609 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Marshall, D.E., Rohde, S.: The Loewner differential equation and slit mappings. J. Am. Math. Soc. 18, 763–778 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nolin, P., Werner, W.: Asymmetry of near-critical percolation interfaces. J. Am. Math. Soc. 22, 797–819 (2009). Archived as arXiv:0710.1470

    Article  MathSciNet  Google Scholar 

  19. Rohde, S.: Private communication (2005)

  20. Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. 161, 883–924 (2005). Archived as arXiv:math.PR/0106036

    Article  MATH  MathSciNet  Google Scholar 

  21. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000). Archived as arXiv:math.PR/9904022

    Article  MATH  MathSciNet  Google Scholar 

  22. Tsai, J.: The Loewner driving function of trajectory arcs of quadratic differentials. J. Math. Anal. Appl. 360, 561–576 (2009). Archived as arXiv:0704.1933v2

    Article  MATH  Google Scholar 

  23. Werner, W.: Random planar curves and Schramm-Loewner evolutions. In: Springer Lecture Notes, vol. 1840, pp. 107–195. Springer, New York (2004). Archived as arXiv:math.PR/0303354

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, T. Numerical Computations for the Schramm-Loewner Evolution. J Stat Phys 137, 839–856 (2009). https://doi.org/10.1007/s10955-009-9866-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9866-2

Navigation