Skip to main content
Log in

Phase Diagram of the ABC Model on an Interval

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 06 August 2011

Abstract

The three species asymmetric ABC model was initially defined on a ring by Evans, Kafri, Koduvely, and Mukamel, and the weakly asymmetric version was later studied by Clincy, Derrida, and Evans. Here the latter model is studied on a one-dimensional lattice of N sites with closed (zero flux) boundaries. In this geometry the local particle conserving dynamics satisfies detailed balance with respect to a canonical Gibbs measure with long range asymmetric pair interactions. This generalizes results for the ring case, where detailed balance holds, and in fact the steady state measure is known, only for the case of equal densities of the different species: in the latter case the stationary states of the system on a ring and on an interval are the same. We prove that in the limit N→∞ the scaled density profiles are given by (pieces of) the periodic trajectory of a particle moving in a quartic confining potential. We further prove uniqueness of the profiles, i.e., the existence of a single phase, in all regions of the parameter space (of average densities and temperature) except at low temperature with all densities equal; in this case a continuum of phases, differing by translation, coexist. The results for the equal density case apply also to the system on the ring, and there extend results of Clincy et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lieb, E.H., Mattis, D.C. (eds.): Mathematical Physics in One Dimension. Academic Press, New York (1966)

    Google Scholar 

  2. Percus, J.K.: Exactly solvable models of classical many-body systems. In: Lebowitz, J.L. (ed.) Simple Models of Equilibrium and Nonequilibrium Phenomena. Amsterdam, North-Holland (1987)

    Google Scholar 

  3. Privman, V. (ed.): Nonequilibrium Statistical Mechanics in One Dimension. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  4. Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 19. Academic Press, London (2000)

    Google Scholar 

  5. Evans, M.R., Kafri, Y., Koduvely, H.M., Mukamel, D.: Phase separation in one-dimensional driven diffusive systems. Phys. Rev. Lett. 80, 425–429 (1998)

    Article  ADS  Google Scholar 

  6. Evans, M.R., Kafri, Y., Koduvely, H.M., Mukamel, D.: Phase separation and coarsening in one-dimensional driven diffusive systems: Local dynamics leading to long-range Hamiltonians. Phys. Rev. E 58, 2764–2778 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  7. Lahiri, R., Barma, M., Ramaswamy, S.: Strong phase separation in a model of sedimenting lattices. Phys. Rev. E 61, 1648–1658 (2000)

    ADS  Google Scholar 

  8. Clincy, M., Derrida, B., Evans, M.R.: Phase transition in the ABC model. Phys. Rev. E 67, 066115 (2003)

    MathSciNet  ADS  Google Scholar 

  9. Bodineau, T., Derrida, B., Lecomte, V., van Wijland, F.: Long range correlations and phase transition in non-equilibrium diffusive systems. J. Stat. Phys. 133, 1013–1031 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Towards a nonequilibrium thermodynamics: a self-contained macroscopic description of driven diffusive systems. J. Stat. Phys. 135, 857–872 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Fayolle, G., Furtlehner, C.: Stochastic deformations of sample paths of random walks and exclusion models. In: Drmota, M., Flajolet, P., Gardy, D., Gittenberger, B. (eds.) Mathematics and Computer Science III: Algorithms, Trees, Combinatorics and Probabilities. Trends in Mathematics. Birkhäuser, Basel (2004)

    Google Scholar 

  12. Fayolle, G., Furtlehner, C.: Stochastic dynamics of discrete curves and multi-type exclusion processes. J. Stat. Phys. 127, 1049–1094 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Sandow, S., Schütz, G.: On U q [SU(2)]-symmetric driven diffusion. Europhys. Lett. 26, 7–12 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  14. Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A 40, R333 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Aizenmann, M., Lieb, E.: The IIIrd law of thermodynamics and the degeneracy of ground states in lattice systems. J. Stat. Phys. 24, 279–297 (1981)

    Article  ADS  Google Scholar 

  16. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999)

    MATH  Google Scholar 

  17. Hewitt, E., Savage, L.J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften, vol. 320. Springer, Berlin (1999)

    MATH  Google Scholar 

  19. Lebowitz, J.L.: Coexistence of phases in Ising ferromagnets. J. Stat. Phys. 16, 463–476 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  20. Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Grundlehren der Mathematischen Wissenschaften, vol. 271. Springer, Berlin (1985)

    MATH  Google Scholar 

  21. Dunford, N., Pettis, B.J.: Linear operators on summable functions. Trans. Am. Math. Soc. 47, 323–392 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mazur, S.: Über konvexe Menge in linearen normierten Raumen. Stud. Math. 4, 70–84 (1933)

    MATH  Google Scholar 

  23. Kafri, Y., Biron, D., Evans, M.R., Mukamel, D.: Slow coarsening in a class of driven systems. Eur. Phys. J. B 16, 669–676 (2000)

    ADS  Google Scholar 

  24. Armitage, J.V., Eberlein, W.F.: Elliptic Functions. London Mathematical Society Student Texts, vol. 67. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Speer.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10955-011-0287-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayyer, A., Carlen, E.A., Lebowitz, J.L. et al. Phase Diagram of the ABC Model on an Interval. J Stat Phys 137, 1166–1204 (2009). https://doi.org/10.1007/s10955-009-9834-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9834-x

Keywords

Navigation