Skip to main content
Log in

Superdiffusivity of the 1D Lattice Kardar-Parisi-Zhang Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The continuum Kardar-Parisi-Zhang equation in one dimension is lattice discretized in such a way that the drift part is divergence free. This allows to determine explicitly the stationary measures. We map the lattice KPZ equation to a bosonic field theory which has a cubic anti-hermitian nonlinearity. Thereby it is established that the stationary two-point function spreads superdiffusively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johansson, K.: Random matrices and determinantal processes. In: Bovier, A., et al. (eds.) Math. Stat. Phys., Session LXXXIII: Lecture Notes of the Les Houches Summer School 2005, pp. 1–56. Elsevier Science, Amsterdam (2006)

    Google Scholar 

  2. Spohn, H.: Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals. Physica A 369, 71–99 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  3. Sasamoto, T.: Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques. J. Stat. Mech. P07007 (2007)

  4. Prähofer, M., Spohn, H.: Exact scaling function for one-dimensional stationary KPZ growth. J. Stat. Phys. 115, 255–279 (2004)

    Article  MATH  ADS  Google Scholar 

  5. Ferrari, P.L., Spohn, H.: Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Commun. Math. Phys. 265, 1–44 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Kardar, M., Parisi, G., Zhang, Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  MATH  ADS  Google Scholar 

  7. Katzav, E., Schwartz, M.: Numerical evidence for stretched exponential relaxations in the Kardar-Parisi-Zhang equation. Phys. Rev. E 69, 052603 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Balazs, M., Quastel, J., Seppalainen, T.: Scaling exponent for the Cole-Hopf solution of KPZ/stochastic Burgers. arXiv:0909.4816

  10. Bernardin, C.: Superdiffusivity of asymmetric energy model in dimension one and two. J. Math. Phys. 49, 103301 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. Miyao, T.: Private communication (2009)

  12. Gotoh, T., Kraichnan, R.H.: Burgers turbulence with large scale forcing. Phys. Fluids A 10, 2859–2866 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. E, W., Khanin, K., Mazel, A., Sinai, Y.: Invariant measures for Burgers equation with stochastic forcing. Ann. Math. 151, 877–960 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Krug, J., Spohn, H.: Kinetic roughening of growing surfaces. In: Godrèche, C. (ed.) Solids Far from Equilibrium, pp. 412–525. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  15. Lam, C.-H., Shin, F.G.: Improved discretization of the Kardar-Parisi-Zhang equation. Phys. Rev. E 58, 5592–5595 (1998)

    Article  ADS  Google Scholar 

  16. Schweber, S.: An Introduction to Relativistic Quantum Field Theory. Harper & Row, New York (1966)

    Google Scholar 

  17. Landim, C., Quastel, J., Salmhofer, M., Yau, H.-T.: Superdiffusivity of asymmetric exclusion process in dimensions one and two. Commun. Math. Phys. 244, 455–481 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Baik, J., Ferrari, P., Péché, S.: Limit process for the TASEP near a characteristic line. arXiv:0907.0226

  19. Ziman, J.M.: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press, New York (1987)

    Google Scholar 

  20. Frachebourg, I., Martin, Ph.A.: Exact statistical properties of the Burgers equation. J. Fluid Mech. 417, 323–349 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Chabanol, M.-L., Duchon, J.: Markovian solutions of inviscid Burgers equation. J. Stat. Phys. 114, 525–534 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Burgers, J.M.: The Nonlinear Diffusion Equation. Reidel, Dordrecht (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Spohn.

Additional information

On the occasion of the 100th Statistical Mechanics Meeting, December 2008 at Rutgers University, we dedicate this article to Joel Lebowitz as mentor and friend for so many years.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasamoto, T., Spohn, H. Superdiffusivity of the 1D Lattice Kardar-Parisi-Zhang Equation. J Stat Phys 137, 917–935 (2009). https://doi.org/10.1007/s10955-009-9831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9831-0

Keywords

Navigation