Skip to main content
Log in

Hydrodynamic Synchronisation of Model Microswimmers

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We define a model microswimmer with a variable cycle time, thus allowing the possibility of phase locking driven by hydrodynamic interactions between swimmers. We find that, for extensile or contractile swimmers, phase locking does occur, with the relative phase of the two swimmers being, in general, close to 0 or π, depending on their relative position and orientation. We show that, as expected on grounds of symmetry, self T-dual swimmers, which are time-reversal covariant, do not phase-lock. We also discuss the phase behaviour of a line of tethered swimmers, or pumps. These show oscillations in their relative phases reminiscent of the metachronal waves of cilia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, G.P., Pooley, C.M., Yeomans, J.M.: Scattering of low-Reynolds-number swimmers. Phys. Rev. E 78(4), 045302 (2008). doi:10.1103/PhysRevE.78.045302

    Article  ADS  Google Scholar 

  2. Avron, J.E., Kenneth, O., Oaknin, D.H.: Pushmepullyou: an efficient micro-swimmer. N. J. Phys. 7, 234 (2005)

    Article  Google Scholar 

  3. Becker, L.E., Koehler, S.A., Stone, H.A.: On self-propulsion of micro-machines at low Reynolds number: Purcell’s three-link swimmer. J. Fluid Mech. 490(1), 15–35 (2003). doi:10.1017/S0022112003005184

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93(9), 098103 (2004). doi:10.1103/PhysRevLett.93.098103

    Article  ADS  Google Scholar 

  5. Dreyfus, R., Baudry, J., Stone, H.A.: Purcells rotator: mechanical rotation at low Reynolds number. Eur. Phys. J. B, Condens. Matter Complex Syst. 47(1), 161–164 (2005). doi:10.1140/epjb/e2005-00302-5

    Article  Google Scholar 

  6. Earl, D.J., Pooley, C.M., Ryder, J.F., Bredberg, I., Yeomans, J.M.: Modeling microscopic swimmers at low Reynolds number. J. Chem. Phys. 126(6), 064703 (2007)

    Article  ADS  Google Scholar 

  7. Felderhof, B.U.: The swimming of animalcules. Phys. Fluids 18(6), 063101 (2006). doi:10.1063/1.2204633

    Article  MathSciNet  ADS  Google Scholar 

  8. Gauger, E., Stark, H.: Numerical study of a microscopic artificial swimmer. Phys. Rev. E 74(2), 021907 (2006). doi:10.1103/PhysRevE.74.021907

    Article  ADS  Google Scholar 

  9. Goldstein, R.E., Polin, M., Tuval, I.: Noise and synchronization in pairs of beating eukaryotic flagella (2009). http://www.amtp.cam.ac.uk/user/gold/pdfs/slips100709.pdf

  10. Golestanian, R., Ajdari, A.: Analytic results for the three-sphere swimmer at low Reynolds number. Phys. Rev. E 77, 036308 (2008) 0711.3700

    Article  ADS  Google Scholar 

  11. Guell, D., Brenner, H., Frankel, R., Hartman, H.: Hydrodynamic forces and band formation in swimming magnetotactic bacteria. J. Theor. Biol. 135(4), 525–542 (1988)

    Article  Google Scholar 

  12. Gueron, S., Levit-Gurevich, K.: Energetic considerations of ciliary beating and the advantage of metachronal coordination. Proc. Natl. Acad. Sci. U.S.A. 96(22), 12240–12245 (1999)

    Article  MATH  ADS  Google Scholar 

  13. Gueron, S., Levit-Gurevich, K., Liron, N., Blum, J.J.: Cilia internal mechanism and metachronal coordination as the result of hydrodynamical coupling. Proc. Natl. Acad. Sci. U.S.A. 94(12), 6001–6006 (1997)

    Article  MATH  ADS  Google Scholar 

  14. Hernandez-Ortiz, J.P., Stoltz, C.G., Graham, M.D.: Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95(20), 204501 (2005). doi:10.1103/PhysRevLett.95.204501

    Article  ADS  Google Scholar 

  15. Hernandez-Ortiz, J.P., Underhill, P.T., Graham, M.D.: Dynamics of confined suspensions of swimming particles. 0811.1814 (2008)

  16. Ishikawa, T., Locsei, J.T., Pedley, T.J.: Development of coherent structures in concentrated suspensions of swimming model micro-organisms. J. Fluid Mech. 615(1), 401–431 (2008). doi:10.1017/S0022112008003807

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Ishikawa, T., Simmonds, M.P., Pedley, T.J.: Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568(1), 119–160 (2006). doi:10.1017/S0022112006002631

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Keaveny, E.E., Maxey, M.R.: Interactions between comoving magnetic microswimmers. Phys. Rev. E 77(4), 041910 (2008). doi:10.1103/PhysRevE.77.041910

    Article  ADS  Google Scholar 

  19. Kim, M., Powers, T.R.: Hydrodynamic interactions between rotating helices. Phys. Rev. E 69(6), 061910 (2004). doi:10.1103/PhysRevE.69.061910

    Article  ADS  Google Scholar 

  20. Kirkwood, J.G., Riseman, J.: The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys. 16(6), 565–573 (1948)

    Article  ADS  Google Scholar 

  21. Lagomarsino, M.C., Bassetti, B., Jona, P.: Rowers coupled hydrodynamically, modeling possible mechanisms for the cooperation of cilia. Eur. Phys. J. B, Condens. Mater Complex Syst. 26(1), 81–88 (2002). doi:10.1140/epjb/e20020069

    Article  Google Scholar 

  22. Lagomarsino, M.C., Jona, P., Bassetti, B.: Metachronal waves for deterministic switching two-state oscillators with hydrodynamic interaction. Phys. Rev. E 68(2), 021908 (2003). doi:10.1103/PhysRevE.68.021908

    Article  ADS  Google Scholar 

  23. Leoni, M., Kotar, J., Bassetti, B., Cicuta, P., Lagomarsino, M.C.: A basic swimmer at low Reynolds number. Soft Matter 5(2), 472–476 (2009)

    Article  Google Scholar 

  24. Lighthill, J.: Flagellar hydrodynamics: the John von Neumann lecture, 1975. SIAM Rev. 18(2), 161–230 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mendelson, N.H., Bourque, A., Wilkening, K., Anderson, K.R., Watkins, J.C.: Organized cell swimming motions in bacillus subtilis colonies: patterns of short-lived whirls and jets. J. Bacteriol. 181(2), 600–609 (1999)

    Google Scholar 

  26. Najafi, A., Golestanian, R.: Simple swimmer at low Reynolds number: three linked spheres. Phys. Rev. E 69(6), 062901 (2004)

    Article  ADS  Google Scholar 

  27. Pooley, C.M., Alexander, G.P., Yeomans, J.M.: Swimming with a friend at low Reynolds number. 0705.3612 (2007)

  28. Purcell, E.M.: Life at low Reynolds number. Am. J. Phys. 45(1), 3–11 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  29. Qian, B., Jiang, H., Gagnon, D.A., Powers, T.R., Breuer, K.S.: Minimal model for hydrodynamic synchronization. 0904.2347 (2009)

  30. Reichert, M., Stark, H.: Synchronization of rotating helices by hydrodynamic interactions. Eur. Phys. J. E, Soft Matter Biol. Phys. 17(4), 493–500 (2005). doi:10.1140/epje/i2004-10152-7

    Article  Google Scholar 

  31. Rotne, J., Prager, S.: Variational treatment of hydrodynamic interaction in polymers. J. Chem. Phys. 50(11), 4831–4837 (1969)

    Article  ADS  Google Scholar 

  32. Silverman, M., Simon, M.: Flagellar rotation and the mechanism of bacterial motility. Nature 249(5452), 73–74 (1974). doi:10.1038/249073a0

    Article  ADS  Google Scholar 

  33. Taylor, G.: Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 209(1099), 447–461 (1951). doi:10.2307/98828

    Article  MATH  ADS  Google Scholar 

  34. Wu, X., Libchaber, A.: Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84(13), 3017 (2000). doi:10.1103/PhysRevLett.84.3017

    Article  ADS  Google Scholar 

  35. Yamakawa, H.: Transport properties of polymer chains in dilute solution: hydrodynamic interaction. J. Chem. Phys. 53(1), 436–443 (1970)

    Article  ADS  Google Scholar 

  36. Yang, Y., Elgeti, J., Gompper, G.: Cooperation of sperm in two dimensions: synchronization, attraction, and aggregation through hydrodynamic interactions. Phys. Rev. E 78(6), 061903 (2008). doi:10.1103/PhysRevE.78.061903

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Putz.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putz, V.B., Yeomans, J.M. Hydrodynamic Synchronisation of Model Microswimmers. J Stat Phys 137, 1001–1013 (2009). https://doi.org/10.1007/s10955-009-9826-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9826-x

Keywords

Navigation