Skip to main content
Log in

Some Ideas About Quantitative Convergence of Collision Models to Their Mean Field Limit

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a stochastic N-particle model for the spatially homogeneous Boltzmann evolution and prove its convergence to the associated Boltzmann equation when N⟶∞, with non-asymptotic estimates: for any time T>0, we bound the distance between the empirical measure of the particle system and the measure given by the Boltzmann evolution in a relevant Hilbert space. The control got is Gaussian, i.e. we prove that the distance is bigger than xN −1/2 with a probability of type \(O(e^{-x^{2}})\). The two main ingredients are a control of fluctuations due to the discrete nature of collisions and a kind of Lipschitz continuity for the Boltzmann collision kernel. We study more extensively the case where our Hilbert space is the homogeneous negative Sobolev space \(\smash {\dot {H}}^{-s}\). Then we are only able to give bounds for Maxwellian models; however, numerical computations tend to show that our results are useful in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bird, G.A.: Direct simulation and the Boltzmann equation. Phys. Fluids 13(10), 2676–2681 (1970)

    Article  MATH  ADS  Google Scholar 

  2. Bolley, F., Guillin, A., Villani, C.: Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Relat. Fields 137, 541–593 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boltzmann, L.: Weitere Studien über das Wärmegleichgenicht unter Gasmoläkuler. Sitzungsber. Akad. Wiss. 66, 275–370 (1872). English translation: Brush, S.: Further studies on the thermal equilibrium of gas molecules. Kinetic Theory 2, 88–175 (1966)

    Google Scholar 

  4. Carleman, T.: Sur la théorie de l’équation intégrodifférentielle de Boltzmann. Acta Math. 60(1), 91–146 (1933)

    Article  MathSciNet  Google Scholar 

  5. Carlen, E.A., Gabetta, E., Toscani, G.: Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys. 199(3), 521–546 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Desvillettes, L.: Boltzmann’s kernel and the spatially homogeneous Boltzmann equation. Riv. Mat. Univ. Parma 6(4), 1–22 (2001). Special issue

    MathSciNet  Google Scholar 

  7. Dudley, R.M.: Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics, vol. 63. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  8. Fernandez, B., Méléard, S.: A Hilbertian approach for fluctuations on the McKean-Vlasov model. Stoch. Process. Their Appl. 71(1), 33–53 (1997)

    Article  MATH  Google Scholar 

  9. Fournier, N., Méléard, S.: Monte-Carlo approximations and fluctuations for 2D Boltzmann equations without cutoff. Markov Process. Relat. Fields 7(1), 159–191 (2001). Inhomogeneous random systems (Cergy-Pontoise, 2000)

    MATH  Google Scholar 

  10. Graham, C., Méléard, S.: Stochastic particle approximations for generalized Boltzmann models and convergence estimates. Ann. Probab. 25(1), 115–132 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955. Berkeley and Los Angeles, vol. III, pp. 171–197. University of California Press, Berkeley (1956)

    Google Scholar 

  12. Kantorovitch, L.: On the translocation of masses. C.R. (Dokl.) Acad. Sci. URSS (N.S.) 37, 199–201 (1942)

    MathSciNet  Google Scholar 

  13. Malrieu, F.: Logarithmic Sobolev inequalities for some nonlinear PDE’s. Stoch. Process. Their Appl. 95(1), 109–132 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Maxwell, J.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)

    Article  Google Scholar 

  15. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pulvirenti, M., Wagner, W., Zavelani Rossi, M.B.: Convergence of particle schemes for the Boltzmann equation. Eur. J. Mech. B Fluids 13(3), 339–351 (1994)

    MATH  MathSciNet  Google Scholar 

  17. Revuz, D., Yor, M., Continuous Martingales and Brownian Motion. Grundlehren der mathematischen Wissenschaften, vol. 293. Springer, Berlin (1999)

    MATH  Google Scholar 

  18. Schwarz, L.: Méthodes Mathématiques pour les Sciences Physiques. Hermann, Paris (1997)

    Google Scholar 

  19. Spohn, H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer, Berlin (1991)

    MATH  Google Scholar 

  20. Sznitman, A.-S., Équations de type de Boltzmann, spatialement homogènes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 66(4), 559–592 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sznitman, A.-S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Math., vol. 1464, pp. 165–251. Springer, Berlin (1991)

    Google Scholar 

  22. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam (2002)

    Google Scholar 

  23. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. Am. Math. Soc., Providence (2003)

    MATH  Google Scholar 

  24. Wagner, W.: A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys. 66(3–4), 1011–1044 (1992)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Peyre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyre, R. Some Ideas About Quantitative Convergence of Collision Models to Their Mean Field Limit. J Stat Phys 136, 1105–1130 (2009). https://doi.org/10.1007/s10955-009-9820-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9820-3

Keywords

Navigation