Skip to main content
Log in

Density-Profile Processes Describing Biological Signaling Networks: Almost Sure Convergence to Deterministic Trajectories

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce jump processes in ℝk, called density-profile processes, to model biological signaling networks. Our modeling setup describes the macroscopic evolution of a finite-size spin-flip model with k types of spins with arbitrary number of internal states interacting through a non-reversible stochastic dynamics. We are mostly interested on the multi-dimensional empirical-magnetization vector in the thermodynamic limit, and prove that, within arbitrary finite time-intervals, its path converges almost surely to a deterministic trajectory determined by a first-order (non-linear) differential equation with explicit bounds on the distance between the stochastic and deterministic trajectories. As parameters of the spin-flip dynamics change, the associated dynamical system may go through bifurcations, associated to phase transitions in the statistical mechanical setting. We present a simple example of spin-flip stochastic model, associated to a synthetic biology model known as repressilator, which leads to a dynamical system with Hopf and pitchfork bifurcations. Depending on the parameter values, the magnetization random path can either converge to a unique stable fixed point, converge to one of a pair of stable fixed points, or asymptotically evolve close to a deterministic orbit in ℝk. We also discuss a simple signaling pathway related to cancer research, called p53 module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Chong, L., Ray, L.B.: Whole-istic biology. Science 295(5560), 1661 (2002). Special Issue on Systems Biology

    Article  Google Scholar 

  2. Harvey, L.: Signal transduction image originally. In: Molecular Cell Biology, 5th edn. Freeman, New York (2003). 973 s. b ill. ISBN: 0-7167-4366-3. Libris: 8926100, repressilator image based on Elowitz and Leibler (2000). http://en.wikipedia.org/wiki/

    Google Scholar 

  3. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, Boca Raton (2006). ISBN:1584886420

    MATH  Google Scholar 

  4. Kitano, H.: Systems biology: a brief overview. Science 295, 1662–1664 (2002)

    Article  ADS  Google Scholar 

  5. Sontag, E.D.: Some new directions in control theory inspired by systems biology. Syst. Biol. 1, 9–18 (2004)

    Article  Google Scholar 

  6. Wellstead, P.: Schroedinger’s legacy systems and life. E.T.S. Walton Lecture, Royal Irish Academy, April (2005)

  7. Alberts, B., et al.: Molecular Biology of the Cell, 4th edn. Garland, New York (2002). ISBN: 0-8153-3218-1

    Google Scholar 

  8. Oda, K., Matsuoka, Y., Funahashi, A., Kitano, H.: A comprehensive pathway map of epidermal growth factor receptor signaling. Molecular Systems Biology (2005). EMBO and Nature Publishing group; msb4100014

  9. Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15(2), 221–231 (2003)

    Article  Google Scholar 

  10. Wolf, D.M., Arkin, A.P.: Motifs, modules and games in bacteria. Curr. Opin. Microbiol. 6(2), 125–134 (2003)

    Article  Google Scholar 

  11. Alon, U.: Biological networks: the tinkerer as an engineer. Science 301, 1866 (2003)

    Article  ADS  Google Scholar 

  12. Hahn, W.C., Weinberg, R.A.: Modeling the molecular circuitry of cancer. Nat. Rev. Cancer 2(5), 331–341 (2002)

    Article  Google Scholar 

  13. http://stke.sciencemag.org/cm/

  14. The chipping forecast III. Nat. Genet. vol. 37, June 2005

  15. Carvalho, A.F., Reis, L.F., Brentani, R.R., Carraro, D.M., Verjovski-Almeida, S., Reis, E.M., Neves, E.J., de Souza, S.J., Brentani, H.: Gene expression arrays in cancer research: methods and applications. Crit. Rev. Oncol./Hematol. 54, 95–105 (2005)

    Article  Google Scholar 

  16. Gomes, L.I., Esteves, G.H., Carvalho, A.F., Cristo, E.B., Hirata, J.R.R., Martins, W.K., Brentani, H., Pelosof, A., Zitron, C., Sallum, R.A., Montagnini, A.L., Soares, F.A., Neves, E.J., Reis, L.F.L.: Expression profile of malignant and nonmalignant lesions of esophagus and stomach: differential activity of functional modules related to inflammation and lipid metabolism. Cancer Res. 65(16), 7127–7136 (2005)

    Article  Google Scholar 

  17. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)

    Article  ADS  Google Scholar 

  18. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1990)

    Google Scholar 

  19. Tyson, J.J., Csikasz-Nagy, A., Novak, B.: The dynamics of cell cycle regulation. Bioessays 24(12), 1095–1109 (2002)

    Article  Google Scholar 

  20. Lauffenburger, D.A.: Cell signaling pathways as control modules: complexity for simplicity? Proc. Natl. Acad. Sci. 97(10), 5031–5033 (2000)

    Article  ADS  Google Scholar 

  21. Murray, J.D.: Mathematical Biology I. Springer, New York (2005)

    Google Scholar 

  22. McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94, 814–819 (1997)

    Article  ADS  Google Scholar 

  23. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)

    Article  ADS  Google Scholar 

  24. Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A.J., Elowitz, M.B., Alon, U.: Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet. 36(2), 147–150 (2004)

    Article  Google Scholar 

  25. Zhang, T., Brazhnik, P., Tyson, J.J.: Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis. Cell Cycle 6(1), 85–94 (2007)

    Google Scholar 

  26. http://www.math.pitt.edu/~bard/xpp/xpp.html

  27. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    MATH  Google Scholar 

  28. Thompson, C.J.: Classical Equilibrium Statistical Mechanics. Clarendon, Oxford (1988)

    Google Scholar 

  29. Durrett, R.: Stochastic spacial models. SIAM Rev. 41(4), 677–718 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley, New York (1986)

    MATH  Google Scholar 

  31. Kurtz, T.G.: Approximation of Population Processes. Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1981)

    Google Scholar 

  32. Wormald, N.C.: Differential equations for random processes and random graphs. Ann. Appl. Probab. 5, 1217–1235 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  33. Schonmann, R.H.: An approach to characterize metastability and critical droplets in stochastic Ising models. Ann. Inst. Henri Poincaré, A Phys. Théor. 55(2), 591–600 (1991)

    MATH  MathSciNet  Google Scholar 

  34. Ruelle, D.: Statistical Mechanics. Benjamin, Elmsford (1969)

    MATH  Google Scholar 

  35. Sontag, E.D.: Monotone and near-monotone biochemical networks. Syst. Synth. Biol. 1, 59–87 (2007)

    Article  Google Scholar 

  36. Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Springer, New York (2005). ISBN-10:3540290591

    Google Scholar 

  37. Thorisson, H.: Coupling, Stationarity, and Regeneration (Probability and its Applications), 1st edn. Springer, New York (2001). 536 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz R. Fontes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, R., Fontes, L.R. & Neves, E.J. Density-Profile Processes Describing Biological Signaling Networks: Almost Sure Convergence to Deterministic Trajectories. J Stat Phys 136, 875–901 (2009). https://doi.org/10.1007/s10955-009-9819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9819-9

Keywords

Navigation