Skip to main content
Log in

Some Statistical Properties of the Burgers Equation with White-Noise Initial Velocity

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We revisit the one-dimensional Burgers equation in the inviscid limit for white-noise initial velocity. We derive the probability distributions of velocity and Lagrangian increments, measured on intervals of any length x. This also gives the velocity structure functions. Next, for the case where the initial density is uniform, we obtain the distribution of the density, over any scale x, and we derive the density two-point correlation and power spectrum. Finally, we consider the Lagrangian displacement field and we derive the distribution of increments of the Lagrangian map. We check that this gives back the well-known mass function of shocks. For all distributions we describe the limiting scaling functions that are obtained in the large-scale and small-scale limits. We also discuss how these results generalize to other initial conditions, or to higher dimensions, and make the connection with a heuristic multifractal formalism. We note that the formation of point-like masses generically leads to a universal small-scale scaling for the density distribution, which is known as the “stable-clustering ansatz” in the cosmological context (where the Burgers dynamics is also known as the “adhesion model”).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aurell, E., Frisch, U., Noullez, A., Blank, M.: Bifractality of the devil’s staircase appearing in the Burgers equation with Brownian initial velocity. J. Stat. Phys. 88, 1151–1164 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Avellaneda, M.: Statistical properties of shocks in Burgers turbulence II: tail probabilities for velocities, shock-strengths and rarefaction intervals. Commun. Math. Phys. 169, 45–59 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Avellaneda, M., Weinan, E.: Statistical properties of shocks in Burgers turbulence. Commun. Math. Phys. 172, 13–38 (1995)

    Article  MATH  ADS  Google Scholar 

  4. Balian, R., Schaeffer, R.: Scale-invariant matter distribution in the universe. II—Bifractal behaviour. Astron. Astrophys. 226, 373–414 (1989)

    MathSciNet  ADS  Google Scholar 

  5. Bec, J., Khanin, K.: Burgers turbulence. Phys. Rep. 447, 1–66 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bertoin, J.: The inviscid Burgers equation with Brownian initial velocity. Commun. Math. Phys. 193, 397–406 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Burgers, J.M.: The Nonlinear Diffusion Equation. Reidel, Dordrecht (1974)

    MATH  Google Scholar 

  8. Cole, J.D.: On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9, 225–236 (1951)

    MATH  MathSciNet  Google Scholar 

  9. Colombi, S., Bouchet, F.R., Hernquist, L.: Self-similarity and scaling behavior of scale-free gravitational clustering. Astrophys. J. 465, 14 (1996)

    Article  ADS  Google Scholar 

  10. Davis, M., Peebles, P.J.E.: On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe. Astrophys. J. Suppl. Ser. 34, 425–450 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  11. Fournier, J.-D., Frisch, U.: L’equation de Burgers deterministe et statistique. J. Mech. Theor. Appl. 2, 699–750 (1983)

    MATH  MathSciNet  ADS  Google Scholar 

  12. Frachebourg, L., Martin, Ph.A.: Exact statistical properties of the Burgers equation. J. Fluid Mech. 417, 323–349 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Frisch, U.: Turbulence. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  14. Frisch, U., Bec, J.: Burgulence. In: Lesieur, M., Yaglom, A., David, F. (eds.) Les Houches 2000: New Trends in Turbulence. Springer, Berlin (2001)

    Google Scholar 

  15. Groeneboom, P.: Brownian motion with a parabolic drift and airy functions. Probab. Theory Related Fields 81, 79–109 (1989)

    Article  MathSciNet  Google Scholar 

  16. Gurbatov, S.N., Malakhov, A., Saichev, A.: Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays and Particles. Manchester University Press, Manchester (1991)

    MATH  Google Scholar 

  17. Gurbatov, S.N., Saichev, A.I., Shandarin, S.F.: The large-scale structure of the universe in the frame of the model equation of non-linear diffusion. Mont. Not. R. Astron. Soc. 236, 385–402 (1989)

    MATH  ADS  Google Scholar 

  18. Gurbatov, S.N., Simdyankin, S.I., Aurell, E., Frisch, U., Toth, G.: On the decay of Burgers turbulence. J. Fluid Mech. 344, 339–374 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Hopf, E.: The partial differential equation u t +uu x =u xx . Commun. Pure Appl. Math. 3, 201–230 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kida, S.: Asymptotic properties of Burgers turbulence. J. Fluid Mech. 93, 337–377 (1979)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Kraichnan, R.H.: Lagrangian-history statistical theory for Burgers’ equation. Phys. Fluids 11, 265–277 (1968)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Le Doussal, P.: Exact results and open questions in first principle functional RG. arXiv:0809.1192 (2008)

  23. Melott, A.L., Shandarin, S.F., Weinberg, D.H.: A test of the adhesion approximation for gravitational clustering. Astrophys. J. 428, 28–34 (1994)

    Article  ADS  Google Scholar 

  24. Molchan, G.M.: Burgers equation with self-similar Gaussian initial data: tail probabilities. J. Stat. Phys. 88, 1139–1150 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Noullez, A., Gurbatov, S.N., Aurell, E., Simdyankin, S.I.: Global picture of self-similar and non-self-similar decay in Burgers turbulence. Phys. Rev. E 71, 056305 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  26. Peacock, J.A., Dodds, S.J.: Non-linear evolution of cosmological power spectra. Mon. Not. R. Astron. Soc. 280, L19–L26 (1996)

    ADS  Google Scholar 

  27. Peebles, P.J.E.: The Large Scale Structure of the Universe. Princeton University Press, Princeton (1980)

    Google Scholar 

  28. She, Z.-S., Aurell, E., Frisch, U.: The inviscid Burgers equation with initial data of Brownian type. Commun. Math. Phys. 148, 623–641 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Sinai, Ya.G.: Statistics of shocks in solutions of inviscid Burgers equation. Commun. Math. Phys. 148, 601–621 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Tribe, R., Zaboronski, O.: On the large time asymptotics of decaying Burgers turbulence. Commun. Math. Phys. 212, 415–436 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Valageas, P.: Non-linear gravitational clustering: smooth halos, substructures and scaling exponents. Astron. Astrophys. 347, 757–768 (1999)

    ADS  Google Scholar 

  32. Valageas, P.: Using the Zeldovich dynamics to test expansion schemes. Astron. Astrophys. 476, 31–58 (2007)

    Article  MATH  ADS  Google Scholar 

  33. Valageas, P.: Quasi-linear regime and rare-event tails of decaying Burgers turbulence. Phys. Rev. E 80, 016305 (2009)

    Article  ADS  Google Scholar 

  34. Valageas, P.: Statistical properties of the Burgers equation with Brownian initial velocity. J. Stat. Phys. 134, 589 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Vergassola, M., Dubrulle, B., Frisch, U., Noullez, A.: Burgers’ equation, devil’s staircases and the mass distribution for large-scale structures. Astron. Astrophys. 289, 325–356 (1994)

    ADS  Google Scholar 

  36. Vogelsberger, M., White, S.D.M., Helmi, A., Springel, V.: The fine-grained phase-space structure of cold dark matter haloes. Mon. Not. R. Astron. Soc. 385, 236–254 (2008)

    Article  ADS  Google Scholar 

  37. Zeldovich, Y.B.: Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys. 5, 84–89 (1970)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Valageas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valageas, P. Some Statistical Properties of the Burgers Equation with White-Noise Initial Velocity. J Stat Phys 137, 729–764 (2009). https://doi.org/10.1007/s10955-009-9809-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9809-y

Navigation