Skip to main content
Log in

Symmetry of the Linearized Boltzmann Equation II

Entropy Production and Onsager–Casimir Relation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This is the second part of the study by the author on the symmetry of the linearized Boltzmann equation. The issue of the present part is the entropy production and the Onsager–Casimir reciprocity relation in the steady non-equilibrium systems. After the discussions on the definition of the entropy, entropy flow, and entropy production in the non-equilibrium gas systems, the expression of the entropy production in the steady state is presented. Then, for the systems weakly perturbed from a uniform equilibrium state, the entropy production is shown to be expressed in terms of the solution of the linearized Boltzmann equation. The thermodynamic forces and fluxes and the kinetic coefficients are defined solely from the expression of the entropy production. The conventional-type Onsager–Casimir relation is shown to hold for the entire range of the Knudsen number in bounded- and unbounded-domain systems, provided that the state of the gas in a far field is a local Maxwellian satisfying the Boltzmann equation for the latter. As to the other unbounded-domain systems, a nonconventional reciprocity is shown to hold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takata, S.: Symmetry of the linearized Boltzmann equation and its application. J. Stat. Phys. (2009) DOI:10.1007/s10955-009-9793-2, (online first)

    MATH  Google Scholar 

  2. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1962)

    Google Scholar 

  3. Pottier, N.: Physique statistique hors d’équilibre. EDP Sciences/CNRS Editions (2007)

  4. McCourt, F.R.W., Beenakker, J.J.M., Köhler, W.E., Kuščer, I.: Nonequilibrium Phenomena in Polyatomic Gases, vol. 2. Clarendon, Oxford (1991)

    Google Scholar 

  5. Loyalka, S.K.: Kinetic theory of thermal transpiration and mechanocaloric effect. I. J. Chem. Phys. 55, 4497–4503 (1971)

    Article  ADS  Google Scholar 

  6. Chernyak, V.G., Margilevskiy, A.Ye.: The kinetic theory of heat and mass transfer from a spherical particle in a rarefied gas. Int. J. Heat Mass Transfer. 32, 2127–2134 (1989)

    Article  MATH  Google Scholar 

  7. Bedeaux, D., Hermans, L.J.F., Ytrehus, T.: Slow evaporation and condensation. Physica A 169, 263–280 (1990)

    Article  ADS  Google Scholar 

  8. Takata, S., Sone, Y., Lhuillier, D., Wakabayashi, M.: Evaporation from or condensation onto a sphere: Numerical analysis of the Boltzmann equation for hard-sphere molecules. Comput. Math. Appl. 35, 193–214 (1998)

    Article  MATH  Google Scholar 

  9. Sharipov, F.: Onsager–Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction. I. General theory for single gas. Physica A 203, 437–456 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  10. Zhdanov, V.M., Roldughin, V.I.: Non-equilibrium thermodynamics and kinetic theory of rarefied gases. Phys. Usp. 41, 349–378 (1998)

    Article  ADS  Google Scholar 

  11. Sharipov, F.: Onsager–Casimir reciprocal relations based on the Boltzmann equation and gas-surface interaction: Single gas. Phys. Rev. E 73, 026110 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. Sharipov, F.: Onsager–Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction. II. Application of the theory for single gas. Physica A 203, 457–485 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  13. Kawasaki, K.: Non-equilibrium and Phase Transition. Asakura, Tokyo (2000). (In Japanese)

    Google Scholar 

  14. Kondepudi, D., Prigogine, I.: Modern Thermodynamics. Wiley, Chichester (1999)

    Google Scholar 

  15. Fermi, E.: Thermodynamics. Dover, New York (1956)

    Google Scholar 

  16. Darrozes, J.S., Guiraud, J.P.: Généralisation formelle du théorèm H en présence de parois. Applications. C.R. Acad. Sci. Paris A 262, 1368–1371 (1966)

    Google Scholar 

  17. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    MATH  Google Scholar 

  18. Sone, Y.: Molecular Gas Dynamics. Birkhäuser, Boston (2007). Supplementary Notes and Errata: Kyoto University Research Information Repository (http://hdl.handle.net/2433/66098)

    Book  MATH  Google Scholar 

  19. Coron, F., Golse, F., Sulem, C.: A classification of well-posed kinetic layer problems. Commun. Pure Appl. Math. 41, 409–435 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sone, Y.: Kinetic Theory and Fluid Dynamics. Birkhäuser, Boston (2002). Supplementary Notes and Errata: Kyoto University Research Information Repository (http://hdl.handle.net/2433/66099)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Takata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takata, S. Symmetry of the Linearized Boltzmann Equation II. J Stat Phys 136, 945–983 (2009). https://doi.org/10.1007/s10955-009-9805-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9805-2

Keywords

Navigation