Skip to main content
Log in

Eulerian and Lagrangian Pictures of Non-equilibrium Diffusions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that a non-equilibrium diffusive dynamics in a finite-dimensional space takes in the Lagrangian frame of its mean local velocity an equilibrium form with the detailed balance property. This explains the equilibrium nature of the fluctuation-dissipation relations in that frame observed previously. The general considerations are illustrated on few examples of stochastic particle dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory for stationary non equilibrium states. J. Stat. Phys. 107, 635–675 (2002)

    Article  MATH  Google Scholar 

  2. Blickle, V., Speck, T., Lutz, C., Seifert, U., Bechinger, C.: Einstein relation generalized to nonequilibrium. Phys. Rev. Lett. 98, 210601 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s Law: a challenge for theorists. In: Fokas, A., Grigoryan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000, pp. 128–150. Imperial College Press, London (2000)

    Google Scholar 

  4. Burgers, J.M.: The Non-Linear Diffusion Equation. Reidel, Dordrecht (1974)

    Google Scholar 

  5. Callen, H.B., Welton, T.A.: Irreversibility and generalized noise. Phys. Rev. 83, 34–40 (1951)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Chetrite, R., Gawędzki, K.: Fluctuation relations for diffusion processes. Commun. Math. Phys. 282, 469–518 (2008)

    Article  MATH  ADS  Google Scholar 

  7. Chetrite, R., Falkovich, G., Gawędzki, K.: Fluctuation relations in simple examples of non-equilibrium steady states. J. Stat. Mech. P08005 (2008)

  8. Crooks, G.E.: Path ensembles averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366 (2000)

    ADS  Google Scholar 

  9. Derrida, B., Lebowitz, J., Speer, E.R.: Free energy functional for nonequilibrium systems: an exactly solvable case. Phys. Rev. Lett. 87, 150601 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  10. Fermi, E., Pasta, J., Ulam, S.: Studies of nonlinear problems. I. In: Segrè, E. (ed.) Collected Papers of Enrico Fermi, vol. 2, pp. 977–988. University of Chicago Press, Chicago (1965)

    Google Scholar 

  11. Gawędzki, K.: Soluble models of turbulent transport. In: Nazarenko, S., Zaboronski, O. (eds.) Non-Equilibrium Statistical Mechanics and Turbulence. LMS Lecture Series, pp. 47–107. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  12. Gomez-Solano, J.R., Petrosyan, A., Ciliberto, S., Chetrite, R., Gawędzki, K.: Experimental verification of a modified fluctuation-dissipation relation for a micron-sized particle in a non-equilibrium steady state. Phys. Rev. Lett. 103, 040601 (2009)

    Article  ADS  Google Scholar 

  13. Halpin-Healy, T., Zhang, Y.-C.: Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Rep. 254, 215–414 (1995)

    Article  ADS  Google Scholar 

  14. Hatano, T., Sasa, S.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463–3466 (2001)

    Article  ADS  Google Scholar 

  15. Hunter, R.J.: Foundations of Colloid Science, 2nd edn. Oxford University Press, Oxford (2001)

    Google Scholar 

  16. Jarzynski, C.: A nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997)

    Article  ADS  Google Scholar 

  17. Jarzynski, C.: Equilibrium free energy differences from nonequilibrium measurements: a master equation approach. Phys. Rev. E 56, 5018–5035 (1997)

    ADS  Google Scholar 

  18. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  MATH  ADS  Google Scholar 

  19. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    MATH  Google Scholar 

  20. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)

    Article  ADS  Google Scholar 

  21. Marini Bettolo Marconi, U., Puglisi, A., Rondoni, L., Vulpiani, A.: Fluctuation-dissipation: response theory in statistical physics. Phys. Rep. 461, 111–195 (2008)

    Article  ADS  Google Scholar 

  22. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics, Mechanics of Turbulence, vol. 1. Dover, New York (2007)

    Google Scholar 

  23. Nelson, E.: Dynamic Theories of Brownian Motion. Princeton University Press, Princeton (1967)

    Google Scholar 

  24. Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928)

    Article  ADS  Google Scholar 

  25. Oksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Berlin (2003). Universitext

    Google Scholar 

  26. Rieder, Z., Lebowitz, J.L., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8, 1073–1078 (1967)

    Article  ADS  Google Scholar 

  27. Risken, H.: The Fokker Planck Equation. Springer, Berlin (1989)

    MATH  Google Scholar 

  28. Rouse, P.E.: A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21, 1272–1280 (1953)

    Article  ADS  Google Scholar 

  29. Speck, T.: Seifert, U: Restoring a fluctuation-dissipation theorem in a nonequilibrium steady state. Europhys. Lett. 74, 391–396 (2006)

    Article  ADS  Google Scholar 

  30. Speck, T., Seifert, U.: Extended Fluctuation-Dissipation Theorem for soft matter in stationary flow. Phys. Rev. E 79, 040102 (2009)

    ADS  Google Scholar 

  31. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    MATH  Google Scholar 

  32. Stroock, D.W.: Markov Processes from K. Itô’s Perspective. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  33. Tailleur, J., Kurchan, J., Lecomte, V.: Mapping nonequilibrium onto equilibrium: the macroscopic fluctuations of simple transport models. Phys. Rev. Lett. 99, 150602 (2007)

    Article  ADS  Google Scholar 

  34. Tailleur, J., Kurchan, J., Lecomte, V.: Mapping out of equilibrium into equilibrium in one-dimensional transport models. J. Phys. A: Math. Theor. 41, 505001 (2008)

    Article  MathSciNet  Google Scholar 

  35. Tokatly, I.V.: Quantum many-body dynamics in a Lagrangian frame: I. Equations of motion and conservation laws, II. Geometric formulation of time-dependent density functional theory. Phys. Rev. B 71, 165104–165105 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Gawędzki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetrite, R., Gawędzki, K. Eulerian and Lagrangian Pictures of Non-equilibrium Diffusions. J Stat Phys 137, 890–916 (2009). https://doi.org/10.1007/s10955-009-9803-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9803-4

Keywords

Navigation