Skip to main content
Log in

Investigation of Noise-Induced Escape Rate: A Quantum Mechanical Approach

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A quantum system coupled to a heat-bath in non-equilibrium environment is considered to study the problem of noise-induced escape rate from a metastable state in the moderate to strong friction limit (Kramers’ regime). It is known that starting from an initial coherent state representation of bath oscillators, one can derive a c-number generalized quantum Langevin equation where the quantum correction terms appear as a coupled infinite set of hierarchy of equations. For practical purpose, one should truncate these equations after a certain order. In our present development, we calculate the quantum correction terms in a closed analytical form based on a systematic perturbation technique and then derive the lowest order quantum correction factor exactly in the case of an Ohmic dissipative bath. Finally, to demonstrate its applicability, the effective equation of motions has been used to study the barrier crossing dynamics which incorporates the quantum correction factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young, M.R., Singh, S.: Opt. Lett. 13, 21 (1998)

    Article  MATH  ADS  Google Scholar 

  2. Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1998)

    Google Scholar 

  3. Zhou, X., Gao, W., Zhu, S.: Phys. Lett. A 213, 43 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Long, Q., Cao, L., Wu, D.-J., Li, Z.-G.: Phys. Lett. A 231, 339 (1997)

    Article  ADS  Google Scholar 

  5. Tekalp, A.M., Pavlovic, G.: IEEE Trans. Signal Process. 39, 2136 (1991)

    Article  ADS  Google Scholar 

  6. Gerashhchenko, O.V., Ginzburg, S.L., Pustovoit, M.A.: JETP Lett. 67, 887 (1998)

    Article  Google Scholar 

  7. Blanter, Y.M., Buttiker, M.: Phys. Rev. Lett. 81, 4040 (1998)

    Article  ADS  Google Scholar 

  8. Li, J.H., Han, Y.X., Chen, S.G.: Physica D 195, 67 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Banerjee, D., Banik, S.K., Bag, B.C., Ray, D.S.: Phys. Rev. E 66, 051105 (2002)

    Article  ADS  Google Scholar 

  10. Barik, D., Banik, S.K., Ray, D.S.: J. Chem. Phys. 119, 680 (2003)

    Article  ADS  Google Scholar 

  11. Okamura, K., Tanimura, Y.: Phys. Rev. E 56, 2747 (1997)

    Article  ADS  Google Scholar 

  12. Tanimura, Y., Steffen, T.: Phys. Rev. E 69, 4095 (2000)

    Google Scholar 

  13. Kato, T., Tanimura, Y.: J. Chem. Phys. 117, 6221 (2002)

    Article  ADS  Google Scholar 

  14. Wendin, G., Shumeiko, V.S.: Low Temp. Phys. 33, 724 (2007)

    Article  ADS  Google Scholar 

  15. Tesch, C.M., De Vivie-Riedle, R.: Phys. Rev. Lett. 89, 157901 (2002)

    Article  ADS  Google Scholar 

  16. Surek, W.H.: Phys. Today 44, 36 (1971)

    Google Scholar 

  17. Caldeira, A.O., Leggett, A.J.: Physica A 121, 587 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Weiss, U.: Quantum Dissipative Systems, 3rd edn. World Scientific, Singapore (2008)

    MATH  Google Scholar 

  19. Feynman, R.P., Vernon, F.L.: Ann. Phys. (NY) 24, 118 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  20. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  21. Ankerhold, J., Pechukas, P., Grabert, H.: Phys. Rev. Lett. 87, 086802 (2001)

    Article  ADS  Google Scholar 

  22. Ankerhold, J., Grabert, H., Pechukas, P.: Chaos 15, 026106 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  23. Koch, W., Grobmann, F., Stockbuger, J.T., Ankerhold, J.: Phys. Rev. Lett. 100, 230402 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Stockbuger, J.T., Grabert, H.: Chem. Phys. 268, 249 (2001)

    Article  Google Scholar 

  25. Stockbuger, J.T., Grabert, H.: Phys. Rev. Lett. 88, 170407 (2002)

    Article  ADS  Google Scholar 

  26. Stockbuger, J.T.: Chem. Phys. 296, 159 (2004)

    Article  ADS  Google Scholar 

  27. Yan, Y., Yang, F., Liu, Y., Shao, J.: Chem. Phys. Lett. 395, 216 (2004)

    Article  ADS  Google Scholar 

  28. Barik, D., Ray, D.S.: J. Stat. Phys. 120, 339 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Zwanzig, R.: J. Stat. Phys. 9, 215 (1973)

    Article  ADS  Google Scholar 

  30. Ford, G.W., Kac, M., Mazur, P.: J. Math. Phys. 6, 504 (1965)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Gardiner, C.W., Zoller, P.: Quantum Noise. A Handbook of Markovian and Non-Markovian Quantum Stochastic. Springer, Berlin (2004)

    MATH  Google Scholar 

  32. Hillery, M., O’Connell, R.F., Scully, M.O., Wigner, E.P.: Phys. Rep. 106, 121 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  33. Barik, S.K., Ray Chaudhuri, J., Ray, D.S.: J. Chem. Phys. 112, 8330 (2000)

    Article  ADS  Google Scholar 

  34. Adelman, S.A.: J. Chem. Phys. 64, 124 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  35. Mazo, R.M.: In: Garrido, L., Segler, P., Sheppberd, R.J. (eds.) Stochastic Processes in Nonequilibrium Systems. Lecture Notes in Physics, vol. 84. Springer, Berlin (1978)

    Chapter  Google Scholar 

  36. Ray Chaudhuri, J., Gangopadhyay, G., Ray, D.S.: J. Chem. Phys. 109, 5565 (1998)

    Article  ADS  Google Scholar 

  37. Ghosh, P.K., Barik, D., Bag, B.C., Ray, D.S.: J. Chem. Phys. 123, 224104 (2005)

    Article  ADS  Google Scholar 

  38. Sundaram, B., Milonni, P.W.: Phys. Rev. E 51, 197 (1995)

    Article  ADS  Google Scholar 

  39. Hänggi, P., Talkner, P., Borkovec, M.: Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  Google Scholar 

  40. Wigner, E.P.: Z. Phys. Chem. B 19, 203 (1932)

    Google Scholar 

  41. Larkin, A.I., Ovchinikov, Yu.N.: Sov. Phys. JETP 59, 420 (1984)

    Google Scholar 

  42. Grabert, H., Weiss, U., Hänggi, P.: Phys. Rev. Lett. 52, 2193 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  43. Langer, J.S.: Ann. Phys. (NY) 41, 108 (1967)

    Article  ADS  Google Scholar 

  44. Grabert, H., Olschowski, P., Weiss, U.: Phys. Rev. B 36, 1931 (1987)

    Article  ADS  Google Scholar 

  45. Ankerhold, J., Grabert, H., Ingold, G.I.: Phys. Rev. E 51, 4267 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sudip Chattopadhyay or Jyotipratim Ray Chaudhuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, S., Chattopadhyay, S. & Ray Chaudhuri, J. Investigation of Noise-Induced Escape Rate: A Quantum Mechanical Approach. J Stat Phys 136, 733–750 (2009). https://doi.org/10.1007/s10955-009-9802-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9802-5

Keywords

Navigation