Skip to main content
Log in

A Stochastic Differential Equation Model with Jumps for Fractional Advection and Dispersion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The path of a tracer particle through a porous medium is typically modeled by a stochastic differential equation (SDE) driven by Brownian noise. This model may not be adequate for highly heterogeneous media. This paper extends the model to a general SDE driven by a Lévy noise. Particle paths follow a Markov process with long jumps. Their transition probability density solves a forward equation derived here via pseudo-differential operator theory and Fourier analysis. In particular, the SDE with stable driving noise has a space-fractional advection-dispersion equation (fADE) with variable coefficients as the forward equation. This result provides a stochastic solution to anomalous diffusion models, and a solid mathematical foundation for particle tracking codes already in use for fractional advection equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Baeumer, B., Meerschaert, M.M.: Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4(4) (2001)

  3. Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972)

    Google Scholar 

  4. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional order governing equation of Lévy motion. Water Resour. Res. 36(6) (2000)

  5. Bhattacharya, R.N., Gupta, V.K., Sposito, G.: On the stochastic foundation of the theory of water flow through unsaturated soil. Water Resour. Res. 12(3) (1976)

  6. Bhattacharya, R.N., Gupta, V.K.: A theoretical explanation of solute dispersion in saturated porous media at the Darcy scale. Water Resour. Res. 19(4), 938–944 (1983)

    Article  ADS  Google Scholar 

  7. Bottcher, B., Schilling, R.L.: Approximation of feller processes by Markov chains with Lévy increments. Stoch. Dyn. 9(1), 71–80 (2009)

    Article  MathSciNet  Google Scholar 

  8. Cartea, A., del-Castillo-Negrete, D.: Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 76, 041105 (2007)

    Article  ADS  Google Scholar 

  9. Chakraborty, P., Meerschaert, M.M., Lim, C.Y.: Parameter estimation for fractional transport: a particle tracking approach. Water Resour. Res. (2009). doi:10.1029/2008WR007577

    Google Scholar 

  10. Fetter, C.W.: Applied Hydrogeology, 4th edn. Prentice Hall, New York (2001), 598 pp.

    Google Scholar 

  11. Gupta, V.K., Sposito, G., Bhattacharya, R.N.: Toward an analytical theory of water flow through inhomogeneous porous media. Water Resour. Res. 13(1), 208–210 (1977)

    Article  ADS  Google Scholar 

  12. Hoh, W.A.: A symbolic calculus for pseudo differential operators generating feller semigroups. Osaka J. Math. 35, 798–820 (1998)

    MathSciNet  Google Scholar 

  13. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Process. North-Holland, Amsterdam (1981)

    Google Scholar 

  14. Jacob, N.: Pseudo-Differential Operators and Markov Process vols. I and II. Imperial College Press, London (2002)

    Google Scholar 

  15. Jacob, N., Schilling, R.L.: Lévy-type processes and pseudo-differential operators. In: Resnick, S., Barndorff-Nielsen, O., Mikosch, Th. (eds.) Lévy Processes—Theory and Applications, pp. 139–168. Birkhäuser, Basel (2001)

    Google Scholar 

  16. Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117, 677–707 (2007)

    Article  MATH  Google Scholar 

  17. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes, Stochastic Models with Infinite Variance. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  18. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993)

    MATH  Google Scholar 

  19. Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  20. Skorokhod, A.V.: Studies in the Theory of Random Processes. Addison-Wesley, Reading (1964)

    Google Scholar 

  21. Zhang, Y., Benson, D., Meerschaert, M.M., Scheffler, H.P.: On using random walks to solve the space-fractional advection-dispersion equation. J. Stat. Phys. 123(1) (2006)

  22. Zhang, Y., Benson, D., Meerschaert, M.M., LaBolle, E., Scheffler, H.P.: Random walk approximation of fractional-order multiscaling anomalous diffusion. Phys. Rev. E 74(2), 706–715 (2006)

    Google Scholar 

  23. Zhang, Y., Benson, D., Meerschaert, M.M., LaBolle, E.: Space-fractional advection-dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the MADE-site data. Water Resour. Res. 43, W05439 (2007). doi:10.1029/2006WR004912

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramita Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, P. A Stochastic Differential Equation Model with Jumps for Fractional Advection and Dispersion. J Stat Phys 136, 527–551 (2009). https://doi.org/10.1007/s10955-009-9794-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9794-1

Keywords

Navigation